1.
y=ax3+bx2
y′=3ax2+2bx
y′′=6ax+2b
y′′(2)=0=>6a(2)+2b=0=>b=−6a
y(2)=8=>8a+4b=8=>b=−2a+2
−6a=−2a+2=>a=−21
b=−6(−21)=3
y=−21x3+3x2
a=−21,b=3
2.
y=69x2−x3+6D(y):(−∞,∞)
E(y):(−∞,∞)
y→∞ as x→−∞
y→−∞ as x→∞
y(0)=1
y′=618x−3x2=3x−2x2 Find the critical number(s)
y′=0=>3x−2x2=0
x1=0,x2=6 Critical numbers: 0,6.
y(0)=1
y(6)=69(6)2−(6)3+6=19 If x<0,y′<0,y decreases.
If 0<x<6,y′>0,y increases.
If x>6,y′<0,y decreases.
The function y has the local maximum with value of 19 at x=6.
The function y has the local minimum with value of 1 at x=0.
y′′=3−x
y′′=0=>3−x=0=>x=3
y(3)=69(3)2−(3)3+6=10 If x<3,y′′>0,y is concave up.
If x>3,y′′<0,y is concave down.
Point (3,10) is the inflection point.
Graph the function
3.
y=x3−3x2+6D(y):(−∞,∞)
E(y):(−∞,∞)
y→−∞ asx→−∞
y→∞ asx→∞
y(0)=6
y′=3x2−6x Find the critical number(s)
y′=0=>3x2−6x=0
x1=0,x2=2 Critical numbers: 0,2.
y(0)=6
y(2)=(2)3−3(2)2+6=2 If x<0,y′>0,y increases.
If 0<x<2,y′<0,y decreases.
If x>2,y′>0,y increases.
The function y has the local maximum with value of 6 at x=0.
The function y has the local minimum with value of 2 at x=2.
y′′=6x−6
y′′=0=>6x−6=0=>x=1
y(1)=(1)3−3(1)2+6=4 If x<1,y′′<0,y is concave down.
If x>1,y′′>0,y is concave up.
Point (1,4) is the inflection point.
Graph the function
Comments