Question #282206

SOLVE AND SHOW COMPLETE SOLUTION



1. if y= ax^3 + bx^2 and its point of inflection is at (2,8), what are the values of a and b?




2. graph the curve and find the point of inflection: y= (9x^2 - x^3 + 6)/ (6).




3. graph the curve and find the point of inflection: y= x^3 - 3x^2 + 6.

1
Expert's answer
2021-12-27T16:17:31-0500

1.


y=ax3+bx2y= ax^3 + bx^2

y=3ax2+2bxy'=3 ax^2 +2 bx

y=6ax+2by''=6ax+2b

y(2)=0=>6a(2)+2b=0=>b=6ay''(2)=0=>6a(2)+2b=0=>b=-6a

y(2)=8=>8a+4b=8=>b=2a+2y(2)=8=>8a+4b=8=>b=-2a+2

6a=2a+2=>a=12-6a=-2a+2=>a=-\dfrac{1}{2}

b=6(12)=3b=-6(-\dfrac{1}{2})=3

y=12x3+3x2y=-\dfrac{1}{2}x^3+3x^2

a=12,b=3a=-\dfrac{1}{2}, b=3

2.


y=9x2x3+66y= \dfrac{9x^2 - x^3 + 6}{6}

D(y):(,)D(y): (-\infin, \infin)


E(y):(,)E(y): (-\infin, \infin)


yy\to\infin as xx\to -\infin

yy\to-\infin as xx\to \infin


y(0)=1y(0)=1



y=18x3x26=3xx22y'= \dfrac{18x - 3x^2 }{6}= 3x-\dfrac{x^2}{2}

Find the critical number(s)


y=0=>3xx22=0y'=0=>3x-\dfrac{x^2}{2}=0

x1=0,x2=6x_1=0, x_2=6

Critical numbers: 0,6.0, 6.


y(0)=1y(0)=1

y(6)=9(6)2(6)3+66=19y(6)= \dfrac{9(6)^2 - (6)^3 + 6}{6}=19

If x<0,y<0,yx<0, y'<0, y decreases.

If 0<x<6,y>0,y0<x<6, y'>0, y increases.

If x>6,y<0,yx>6, y'<0, y decreases.

The function yy has the local maximum with value of 1919 at x=6.x=6.

The function yy has the local minimum with value of 11 at x=0.x=0.



y=3xy''=3-x

y=0=>3x=0=>x=3y''=0=>3-x=0=>x=3

y(3)=9(3)2(3)3+66=10y(3)= \dfrac{9(3)^2 - (3)^3 + 6}{6}=10

If x<3,y>0,yx<3, y''>0, y is concave up.

If x>3,y<0,yx>3, y''<0, y is concave down.

Point (3,10)(3, 10) is the inflection point.

Graph the function




3.


y=x33x2+6y= x^3 - 3x^2 + 6

D(y):(,)D(y): (-\infin, \infin)


E(y):(,)E(y): (-\infin, \infin)


yy\to-\infin ​asxx\to -\infin

yy\to\infin ​asxx\to \infin


y(0)=6y(0)=6



y=3x26xy'=3x^2-6x

Find the critical number(s)


y=0=>3x26x=0y'=0=>3x^2-6x=0

x1=0,x2=2x_1=0, x_2=2

Critical numbers: 0,2.0, 2.


y(0)=6y(0)=6

y(2)=(2)33(2)2+6=2y(2)=(2)^3 - 3(2)^2 + 6=2

If x<0,y>0,yx<0, y'>0, y increases.

If 0<x<2,y<0,y0<x<2, y'<0, y decreases.

If x>2,y>0,yx>2, y'>0, y increases.

The function yy has the local maximum with value of 66 at x=0.x=0.

The function yy has the local minimum with value of 22 at x=2.x=2.



y=6x6y''=6x-6

y=0=>6x6=0=>x=1y''=0=>6x-6=0=>x=1

y(1)=(1)33(1)2+6=4y(1)=(1)^3 - 3(1)^2 + 6=4

If x<1,y<0,yx<1, y''<0, y is concave down.

If x>1,y>0,yx>1, y''>0, y is concave up.

Point (1,4)(1, 4) is the inflection point.

Graph the function


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS