Answer to Question #282159 in Calculus for james

Question #282159

Find the area bounded by the ff. curves and lines:

1. the loop of y2 = x 4 (3 - x)

2. 4y = x 2 – 2lnx, y = 0, x = 1, x = 4.

3. y 2 + 4x – 8 = 0, Y = 2x

4. an arch of y =1/3sin(x/3)



1
Expert's answer
2021-12-24T10:24:37-0500

1.


"y^2 = x ^4 (3 - x), x\\leq3"

"y=\\pm x^2\\sqrt{3-x}"

"x^2\\sqrt{3-x}=- x^2\\sqrt{3-x}"

"x_1=0, x_2=3"

"Area=A=2\\displaystyle\\int_{0}^{3}x^2\\sqrt{3-x}dx"

"\\int x^2\\sqrt{3-x}dx"

"u=3-x, x=3-u, dx=-du"

"\\int x^2\\sqrt{3-x}dx=-\\int (3-u)^2\\sqrt{u}du"

"=-\\int(9u^{1\/2}-6u^{3\/2}+u^{5\/2})du"

"=-(9(\\dfrac{2}{3})u^{3\/2}-6(\\dfrac{2}{5})u^{5\/2}+\\dfrac{2}{7}u^{7\/2})+C"

"=-6(3-x)^{3\/2}+\\dfrac{12}{5}(3-x)^{5\/2}-\\dfrac{2}{7}(3-x)^{7\/2}+C"

"A=2[-6(3-x)^{3\/2}+\\dfrac{12}{5}(3-x)^{5\/2}-\\dfrac{2}{7}(3-x)^{7\/2}]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}"

"=2(0-(-6(3)^{3\/2}+\\dfrac{12}{5}(3)^{5\/2}-\\dfrac{2}{7}(3)^{7\/2}))"

"=\\dfrac{288\\sqrt{3}}{35} ({units}^2)"

2.


"4y = x^ 2 \u2013 2\\ln x, y = 0, x = 1, x = 4."

"y=\\dfrac{1}{4}x^2-\\dfrac{1}{2}\\ln x"

"Area=A=\\displaystyle\\int_{1}^{4}(\\dfrac{1}{4}x^2-\\dfrac{1}{2}\\ln x)dx"

"\\int\\ln xdx=x\\ln x-\\int x(\\dfrac{1}{x})dx=x\\ln x-x+C"

"A=[\\dfrac{1}{12}x^3-\\dfrac{1}{2}x\\ln x+\\dfrac{1}{2}x]\\begin{matrix}\n 4\\\\\n 1\n\\end{matrix}"

"=\\dfrac{16}{3}-4\\ln 2+2-\\dfrac{1}{12}+0-\\dfrac{1}{2}"

"=\\dfrac{27}{4}-4\\ln 2\\ ({units}^2)"

3.


"y=2x=>x=\\dfrac{1}{2}y"

"y^ 2+4x-8=0=>x=-\\dfrac{1}{4}y^2+2"

"-\\dfrac{1}{4}y^2+2=\\dfrac{1}{2}y"

"y^2+2y-8=0"

"y_1=-4, y_2=2"

"Area=A=\\displaystyle\\int_{-4}^{2}(-\\dfrac{1}{4}y^2+2-\\dfrac{1}{2}y)dy"

"=[-\\dfrac{1}{12}y^3+2y-\\dfrac{1}{4}y^2]\\begin{matrix}\n 2 \\\\\n -4\n\\end{matrix}"

"=-\\dfrac{8}{12}+2(2)-\\dfrac{4}{4}-(-\\dfrac{-64}{12}+2(-4)-\\dfrac{16}{4})"

"=9({units}^2)"


4.


"y=\\dfrac{1}{3}\\sin(\\dfrac{x}{3})"




"y=0=>\\dfrac{1}{3}\\sin(\\dfrac{x}{3})=0"

"x=3\\pi n, n\\in \\Z"

"x_0=0, x_1=3\\pi"

"Area=A=\\displaystyle\\int_{0}^{3\\pi}\\dfrac{1}{3}\\sin(\\dfrac{x}{3})dx"

"=[-\\cos(\\dfrac{x}{3})]\\begin{matrix}\n 3\\pi \\\\\n 0\n\\end{matrix}=-(-1-1)=2({units}^2)"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog