Find the area bounded by the ff. curves and lines:
1. the loop of y2 = x 4 (3 - x)
2. 4y = x 2 – 2lnx, y = 0, x = 1, x = 4.
3. y 2 + 4x – 8 = 0, Y = 2x
4. an arch of y =1/3sin(x/3)
1.
"y=\\pm x^2\\sqrt{3-x}"
"x^2\\sqrt{3-x}=- x^2\\sqrt{3-x}"
"x_1=0, x_2=3"
"Area=A=2\\displaystyle\\int_{0}^{3}x^2\\sqrt{3-x}dx"
"\\int x^2\\sqrt{3-x}dx"
"u=3-x, x=3-u, dx=-du"
"\\int x^2\\sqrt{3-x}dx=-\\int (3-u)^2\\sqrt{u}du"
"=-\\int(9u^{1\/2}-6u^{3\/2}+u^{5\/2})du"
"=-(9(\\dfrac{2}{3})u^{3\/2}-6(\\dfrac{2}{5})u^{5\/2}+\\dfrac{2}{7}u^{7\/2})+C"
"=-6(3-x)^{3\/2}+\\dfrac{12}{5}(3-x)^{5\/2}-\\dfrac{2}{7}(3-x)^{7\/2}+C"
"A=2[-6(3-x)^{3\/2}+\\dfrac{12}{5}(3-x)^{5\/2}-\\dfrac{2}{7}(3-x)^{7\/2}]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}"
"=2(0-(-6(3)^{3\/2}+\\dfrac{12}{5}(3)^{5\/2}-\\dfrac{2}{7}(3)^{7\/2}))"
"=\\dfrac{288\\sqrt{3}}{35} ({units}^2)"
2.
"y=\\dfrac{1}{4}x^2-\\dfrac{1}{2}\\ln x"
"Area=A=\\displaystyle\\int_{1}^{4}(\\dfrac{1}{4}x^2-\\dfrac{1}{2}\\ln x)dx"
"\\int\\ln xdx=x\\ln x-\\int x(\\dfrac{1}{x})dx=x\\ln x-x+C"
"A=[\\dfrac{1}{12}x^3-\\dfrac{1}{2}x\\ln x+\\dfrac{1}{2}x]\\begin{matrix}\n 4\\\\\n 1\n\\end{matrix}"
"=\\dfrac{16}{3}-4\\ln 2+2-\\dfrac{1}{12}+0-\\dfrac{1}{2}"
"=\\dfrac{27}{4}-4\\ln 2\\ ({units}^2)"
3.
"y^ 2+4x-8=0=>x=-\\dfrac{1}{4}y^2+2"
"-\\dfrac{1}{4}y^2+2=\\dfrac{1}{2}y"
"y^2+2y-8=0"
"y_1=-4, y_2=2"
"Area=A=\\displaystyle\\int_{-4}^{2}(-\\dfrac{1}{4}y^2+2-\\dfrac{1}{2}y)dy"
"=[-\\dfrac{1}{12}y^3+2y-\\dfrac{1}{4}y^2]\\begin{matrix}\n 2 \\\\\n -4\n\\end{matrix}"
"=-\\dfrac{8}{12}+2(2)-\\dfrac{4}{4}-(-\\dfrac{-64}{12}+2(-4)-\\dfrac{16}{4})"
"=9({units}^2)"
4.
"x=3\\pi n, n\\in \\Z"
"x_0=0, x_1=3\\pi"
"Area=A=\\displaystyle\\int_{0}^{3\\pi}\\dfrac{1}{3}\\sin(\\dfrac{x}{3})dx"
"=[-\\cos(\\dfrac{x}{3})]\\begin{matrix}\n 3\\pi \\\\\n 0\n\\end{matrix}=-(-1-1)=2({units}^2)"
Comments
Leave a comment