Question #282159

Find the area bounded by the ff. curves and lines:

1. the loop of y2 = x 4 (3 - x)

2. 4y = x 2 – 2lnx, y = 0, x = 1, x = 4.

3. y 2 + 4x – 8 = 0, Y = 2x

4. an arch of y =1/3sin(x/3)



1
Expert's answer
2021-12-24T10:24:37-0500

1.


y2=x4(3x),x3y^2 = x ^4 (3 - x), x\leq3

y=±x23xy=\pm x^2\sqrt{3-x}

x23x=x23xx^2\sqrt{3-x}=- x^2\sqrt{3-x}

x1=0,x2=3x_1=0, x_2=3

Area=A=203x23xdxArea=A=2\displaystyle\int_{0}^{3}x^2\sqrt{3-x}dx

x23xdx\int x^2\sqrt{3-x}dx

u=3x,x=3u,dx=duu=3-x, x=3-u, dx=-du

x23xdx=(3u)2udu\int x^2\sqrt{3-x}dx=-\int (3-u)^2\sqrt{u}du

=(9u1/26u3/2+u5/2)du=-\int(9u^{1/2}-6u^{3/2}+u^{5/2})du

=(9(23)u3/26(25)u5/2+27u7/2)+C=-(9(\dfrac{2}{3})u^{3/2}-6(\dfrac{2}{5})u^{5/2}+\dfrac{2}{7}u^{7/2})+C

=6(3x)3/2+125(3x)5/227(3x)7/2+C=-6(3-x)^{3/2}+\dfrac{12}{5}(3-x)^{5/2}-\dfrac{2}{7}(3-x)^{7/2}+C

A=2[6(3x)3/2+125(3x)5/227(3x)7/2]30A=2[-6(3-x)^{3/2}+\dfrac{12}{5}(3-x)^{5/2}-\dfrac{2}{7}(3-x)^{7/2}]\begin{matrix} 3 \\ 0 \end{matrix}

=2(0(6(3)3/2+125(3)5/227(3)7/2))=2(0-(-6(3)^{3/2}+\dfrac{12}{5}(3)^{5/2}-\dfrac{2}{7}(3)^{7/2}))

=288335(units2)=\dfrac{288\sqrt{3}}{35} ({units}^2)

2.


4y=x22lnx,y=0,x=1,x=4.4y = x^ 2 – 2\ln x, y = 0, x = 1, x = 4.

y=14x212lnxy=\dfrac{1}{4}x^2-\dfrac{1}{2}\ln x

Area=A=14(14x212lnx)dxArea=A=\displaystyle\int_{1}^{4}(\dfrac{1}{4}x^2-\dfrac{1}{2}\ln x)dx

lnxdx=xlnxx(1x)dx=xlnxx+C\int\ln xdx=x\ln x-\int x(\dfrac{1}{x})dx=x\ln x-x+C

A=[112x312xlnx+12x]41A=[\dfrac{1}{12}x^3-\dfrac{1}{2}x\ln x+\dfrac{1}{2}x]\begin{matrix} 4\\ 1 \end{matrix}

=1634ln2+2112+012=\dfrac{16}{3}-4\ln 2+2-\dfrac{1}{12}+0-\dfrac{1}{2}

=2744ln2 (units2)=\dfrac{27}{4}-4\ln 2\ ({units}^2)

3.


y=2x=>x=12yy=2x=>x=\dfrac{1}{2}y

y2+4x8=0=>x=14y2+2y^ 2+4x-8=0=>x=-\dfrac{1}{4}y^2+2

14y2+2=12y-\dfrac{1}{4}y^2+2=\dfrac{1}{2}y

y2+2y8=0y^2+2y-8=0

y1=4,y2=2y_1=-4, y_2=2

Area=A=42(14y2+212y)dyArea=A=\displaystyle\int_{-4}^{2}(-\dfrac{1}{4}y^2+2-\dfrac{1}{2}y)dy

=[112y3+2y14y2]24=[-\dfrac{1}{12}y^3+2y-\dfrac{1}{4}y^2]\begin{matrix} 2 \\ -4 \end{matrix}

=812+2(2)44(6412+2(4)164)=-\dfrac{8}{12}+2(2)-\dfrac{4}{4}-(-\dfrac{-64}{12}+2(-4)-\dfrac{16}{4})

=9(units2)=9({units}^2)


4.


y=13sin(x3)y=\dfrac{1}{3}\sin(\dfrac{x}{3})




y=0=>13sin(x3)=0y=0=>\dfrac{1}{3}\sin(\dfrac{x}{3})=0

x=3πn,nZx=3\pi n, n\in \Z

x0=0,x1=3πx_0=0, x_1=3\pi

Area=A=03π13sin(x3)dxArea=A=\displaystyle\int_{0}^{3\pi}\dfrac{1}{3}\sin(\dfrac{x}{3})dx

=[cos(x3)]3π0=(11)=2(units2)=[-\cos(\dfrac{x}{3})]\begin{matrix} 3\pi \\ 0 \end{matrix}=-(-1-1)=2({units}^2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS