differentiate implicity the following equations. show complete solutions
1. e^(2x+3y) =x^2 - In(xy^3)
2. x^2 y^3 = xy+x^3 + y^2 + 5
1. e(2x+3y)=x2−In(xy3)1.\ e^{(2x+3y)} =x^2 - In(xy^3)1. e(2x+3y)=x2−In(xy3)
Differentiating both sides w.r.t xxx
e(2x+3y){2+3y′}=2x−1xy3.[y3+2xy2y′]e^{(2x+3y)}\{2+3y'\} =2x-\frac{1}{xy^3}.[y^3+2xy^2y']e(2x+3y){2+3y′}=2x−xy31.[y3+2xy2y′]
2.x2y3=xy+x3+y2+52. x^2 y^3 = xy+x^3 + y^2 + 52.x2y3=xy+x3+y2+5
2xy3+2x2y2y′=y+xy′+3x2+2yy′2xy^3+2x^2y^2y'=y+xy'+3x^2+2yy'2xy3+2x2y2y′=y+xy′+3x2+2yy′
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments