f ( x ) = 8 x 3 + 81 x 2 − 42 x − 8 f(x)=8x^3+81x^2-42x-8 f ( x ) = 8 x 3 + 81 x 2 − 42 x − 8 Domain: ( − ∞ , ∞ ) (-\infin, \infin) ( − ∞ , ∞ )
Find the first derivative
f ′ ( x ) = 24 x 2 + 162 x − 42 f'(x)=24x^2+162x-42 f ′ ( x ) = 24 x 2 + 162 x − 42 Find the critical number(s)
f ′ ( x ) = 0 = > 24 x 2 + 162 x − 42 = 0 f'(x)=0=>24x^2+162x-42=0 f ′ ( x ) = 0 => 24 x 2 + 162 x − 42 = 0
4 x 2 + 27 x − 7 = 0 4x^2+27x-7=0 4 x 2 + 27 x − 7 = 0
D = ( 27 ) 2 − 4 ( 4 ) ( − 7 ) = 841 D=(27)^2-4(4)(-7)=841 D = ( 27 ) 2 − 4 ( 4 ) ( − 7 ) = 841
x = − 27 ± 841 2 ( 4 ) x=\dfrac{-27\pm\sqrt{841}}{2(4)} x = 2 ( 4 ) − 27 ± 841
x 1 = − 27 − 29 8 = − 7 x_1=\dfrac{-27-29}{8}=-7 x 1 = 8 − 27 − 29 = − 7
x 2 = − 27 + 29 8 = 1 4 x_2=\dfrac{-27+29}{8}=\dfrac{1}{4} x 2 = 8 − 27 + 29 = 4 1 Critical numbers: − 7 , 1 4 . -7, \dfrac{1}{4}. − 7 , 4 1 .
If x < − 7 , f ′ ( x ) > 0 , f ( x ) x<-7, f'(x)>0, f(x) x < − 7 , f ′ ( x ) > 0 , f ( x ) increases.
If − 7 < x < 1 4 , f ′ ( x ) < 0 , f ( x ) -7<x<\dfrac{1}{4}, f'(x)<0, f(x) − 7 < x < 4 1 , f ′ ( x ) < 0 , f ( x ) decreases.
If x > 1 4 , f ′ ( x ) > 0 , f ( x ) x>\dfrac{1}{4}, f'(x)>0, f(x) x > 4 1 , f ′ ( x ) > 0 , f ( x ) increases.
f ( − 7 ) = 8 ( − 7 ) 3 + 81 ( − 7 ) 2 − 42 ( − 7 ) − 8 = 1511 f(-7)=8(-7)^3+81(-7)^2-42(-7)-8=1511 f ( − 7 ) = 8 ( − 7 ) 3 + 81 ( − 7 ) 2 − 42 ( − 7 ) − 8 = 1511
f ( 1 4 ) = 8 ( 1 4 ) 3 + 81 ( 1 4 ) 2 − 42 ( 1 4 ) − 8 = − 213 16 f(\dfrac{1}{4})=8(\dfrac{1}{4})^3+81(\dfrac{1}{4})^2-42(\dfrac{1}{4})-8=-\dfrac{213}{16} f ( 4 1 ) = 8 ( 4 1 ) 3 + 81 ( 4 1 ) 2 − 42 ( 4 1 ) − 8 = − 16 213
Local maximum: ( − 7 , 1511 ) (-7, 1511) ( − 7 , 1511 )
Local minimum: ( 1 4 , − 213 16 ) (\dfrac{1}{4}, -\dfrac{213}{16}) ( 4 1 , − 16 213 )
Comments