f(x)=8x3+81x2−42x−8Domain: (−∞,∞)
Find the first derivative
f′(x)=24x2+162x−42 Find the critical number(s)
f′(x)=0=>24x2+162x−42=0
4x2+27x−7=0
D=(27)2−4(4)(−7)=841
x=2(4)−27±841
x1=8−27−29=−7
x2=8−27+29=41 Critical numbers: −7,41.
If x<−7,f′(x)>0,f(x) increases.
If −7<x<41,f′(x)<0,f(x) decreases.
If x>41,f′(x)>0,f(x) increases.
f(−7)=8(−7)3+81(−7)2−42(−7)−8=1511
f(41)=8(41)3+81(41)2−42(41)−8=−16213
Local maximum: (−7,1511)
Local minimum: (41,−16213)
Comments