determine the critical points of f(x)=8x3+81x2-42x-8
Domain: "(-\\infin, \\infin)"
Find the first derivative
Find the critical number(s)
"4x^2+27x-7=0"
"D=(27)^2-4(4)(-7)=841"
"x=\\dfrac{-27\\pm\\sqrt{841}}{2(4)}"
"x_1=\\dfrac{-27-29}{8}=-7"
"x_2=\\dfrac{-27+29}{8}=\\dfrac{1}{4}"
Critical numbers: "-7, \\dfrac{1}{4}."
If "x<-7, f'(x)>0, f(x)" increases.
If "-7<x<\\dfrac{1}{4}, f'(x)<0, f(x)" decreases.
If "x>\\dfrac{1}{4}, f'(x)>0, f(x)" increases.
"f(\\dfrac{1}{4})=8(\\dfrac{1}{4})^3+81(\\dfrac{1}{4})^2-42(\\dfrac{1}{4})-8=-\\dfrac{213}{16}"
Local maximum: "(-7, 1511)"
Local minimum: "(\\dfrac{1}{4}, -\\dfrac{213}{16})"
Comments
Leave a comment