Answer to Question #282186 in Calculus for bereket

Question #282186

determine the critical points of f(x)=8x3+81x2-42x-8


1
Expert's answer
2021-12-23T16:02:18-0500
"f(x)=8x^3+81x^2-42x-8"

Domain: "(-\\infin, \\infin)"

Find the first derivative


"f'(x)=24x^2+162x-42"

Find the critical number(s)


"f'(x)=0=>24x^2+162x-42=0"

"4x^2+27x-7=0"

"D=(27)^2-4(4)(-7)=841"

"x=\\dfrac{-27\\pm\\sqrt{841}}{2(4)}"

"x_1=\\dfrac{-27-29}{8}=-7"

"x_2=\\dfrac{-27+29}{8}=\\dfrac{1}{4}"

Critical numbers: "-7, \\dfrac{1}{4}."


If "x<-7, f'(x)>0, f(x)" increases.

If "-7<x<\\dfrac{1}{4}, f'(x)<0, f(x)" decreases.

If "x>\\dfrac{1}{4}, f'(x)>0, f(x)" increases.


"f(-7)=8(-7)^3+81(-7)^2-42(-7)-8=1511"

"f(\\dfrac{1}{4})=8(\\dfrac{1}{4})^3+81(\\dfrac{1}{4})^2-42(\\dfrac{1}{4})-8=-\\dfrac{213}{16}"

Local maximum: "(-7, 1511)"


Local minimum: "(\\dfrac{1}{4}, -\\dfrac{213}{16})"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog