Question #282186

determine the critical points of f(x)=8x3+81x2-42x-8


1
Expert's answer
2021-12-23T16:02:18-0500
f(x)=8x3+81x242x8f(x)=8x^3+81x^2-42x-8

Domain: (,)(-\infin, \infin)

Find the first derivative


f(x)=24x2+162x42f'(x)=24x^2+162x-42

Find the critical number(s)


f(x)=0=>24x2+162x42=0f'(x)=0=>24x^2+162x-42=0

4x2+27x7=04x^2+27x-7=0

D=(27)24(4)(7)=841D=(27)^2-4(4)(-7)=841

x=27±8412(4)x=\dfrac{-27\pm\sqrt{841}}{2(4)}

x1=27298=7x_1=\dfrac{-27-29}{8}=-7

x2=27+298=14x_2=\dfrac{-27+29}{8}=\dfrac{1}{4}

Critical numbers: 7,14.-7, \dfrac{1}{4}.


If x<7,f(x)>0,f(x)x<-7, f'(x)>0, f(x) increases.

If 7<x<14,f(x)<0,f(x)-7<x<\dfrac{1}{4}, f'(x)<0, f(x) decreases.

If x>14,f(x)>0,f(x)x>\dfrac{1}{4}, f'(x)>0, f(x) increases.


f(7)=8(7)3+81(7)242(7)8=1511f(-7)=8(-7)^3+81(-7)^2-42(-7)-8=1511

f(14)=8(14)3+81(14)242(14)8=21316f(\dfrac{1}{4})=8(\dfrac{1}{4})^3+81(\dfrac{1}{4})^2-42(\dfrac{1}{4})-8=-\dfrac{213}{16}

Local maximum: (7,1511)(-7, 1511)


Local minimum: (14,21316)(\dfrac{1}{4}, -\dfrac{213}{16})



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS