Find the area bounded by the curves y = x3, y = 1, and x = 0 using double integration.
From the graph: 0<x<y13,0<y<10<x<y^{\frac{1}{3}}, 0<y<10<x<y31,0<y<1 [Since y=x3⇒x=y13y=x^3\Rightarrow x=y^{\frac{1}{3}}y=x3⇒x=y31 ]
Area
=∫01∫0y13dxdy=∫01[x]0y13dy=∫01y13dy=[y4343]01=34=0.75 sq. units=\int_{0}^{1}\int_{0}^{y^{\frac 1 3}} dxdy=\int_{0}^{1}[x]_{0}^{y^{\frac{1}{3}}}dy=\int_{0}^{1} y^{\frac{1}{3}}dy\\ =[\frac{y^{\frac 4 3}}{\frac{4}{3}}]_{0}^{1}=\frac 3 4=0.75\ \text{sq. units}=∫01∫0y31dxdy=∫01[x]0y31dy=∫01y31dy=[34y34]01=43=0.75 sq. units
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments