Find the area bounded by the curves y = x3, y = 1, and x = 0 using double integration.
From the graph: "0<x<y^{\\frac{1}{3}}, 0<y<1" [Since "y=x^3\\Rightarrow x=y^{\\frac{1}{3}}" ]
Area
"=\\int_{0}^{1}\\int_{0}^{y^{\\frac 1 3}} dxdy=\\int_{0}^{1}[x]_{0}^{y^{\\frac{1}{3}}}dy=\\int_{0}^{1} y^{\\frac{1}{3}}dy\\\\\n=[\\frac{y^{\\frac 4 3}}{\\frac{4}{3}}]_{0}^{1}=\\frac 3 4=0.75\\ \\text{sq. units}"
Comments
Leave a comment