24.
∑ ︁ n = 1 ∞ ( n ! ) 2 n 2 n ∑︁^∞_{n=1}\frac{(n!)^2}{n^{2n}} ∑ ︁ n = 1 ∞ n 2 n ( n ! ) 2
lim n → ∞ n ! n n = lim n → ∞ 1 ⋅ 2 ⋅ 3... ( n − 1 ) n n ⋅ n . . . n = 0 \displaystyle \lim_{n\to \infin}\frac{{n!}}{n^n}=\displaystyle \lim_{n\to \infin}\frac{{1\cdot2\cdot3...(n-1)n}}{n\cdot n...n}=0 n → ∞ lim n n n ! = n → ∞ lim n ⋅ n ... n 1 ⋅ 2 ⋅ 3... ( n − 1 ) n = 0
so,
lim n → ∞ u n n = lim n → ∞ ( n ! ) 2 n 2 n n = 0 < 1 \displaystyle \lim_{n\to \infin}\sqrt[n]{u_n}=\displaystyle \lim_{n\to \infin}\sqrt[n]{\frac{(n!)^2}{n^{2n}}}=0<1 n → ∞ lim n u n = n → ∞ lim n n 2 n ( n ! ) 2 = 0 < 1
so, series converges
25.
∑ ︁ n = 1 ∞ n 3 + 1 2 n + 1 ∑︁^∞_{n=1}\frac{n^3+1}{2^n+1} ∑ ︁ n = 1 ∞ 2 n + 1 n 3 + 1
using L'Hopital's rule:
lim n → ∞ n 3 + 1 2 n + 1 = lim n → ∞ 6 2 n l n 3 2 = 0 \displaystyle \lim_{n\to \infin}\frac{n^3+1}{2^{n}+1}=\displaystyle \lim_{n\to \infin}\frac{6}{2^nln^32}=0 n → ∞ lim 2 n + 1 n 3 + 1 = n → ∞ lim 2 n l n 3 2 6 = 0
then:
lim n → ∞ u n n = lim n → ∞ n 3 + 1 2 n + 1 n = 0 < 1 \displaystyle \lim_{n\to \infin}\sqrt[n]{u_n}=\displaystyle \lim_{n\to \infin}\sqrt[n]{\frac{n^3+1}{2^{n}+1}}=0<1 n → ∞ lim n u n = n → ∞ lim n 2 n + 1 n 3 + 1 = 0 < 1
so, series converges
26.
1 2 ⋅ 3 ⋅ 4 + 2 3 ⋅ 4 ⋅ 5 + 3 4 ⋅ 5 ⋅ 6 + 4 5 ⋅ 6 ⋅ 7 + . . . = ∑ n = 1 ∞ n ( n + 1 ) ( n + 2 ) ( n + 3 ) \frac{1}{2 · 3 · 4}+\frac{2}{3 · 4 · 5}+\frac{3}{4 · 5 · 6}+\frac{4}{5 · 6 · 7}+...=\sum_{n=1}^{\infin}\frac{n}{(n+1)(n+2)(n+3)} 2 ⋅ 3 ⋅ 4 1 + 3 ⋅ 4 ⋅ 5 2 + 4 ⋅ 5 ⋅ 6 3 + 5 ⋅ 6 ⋅ 7 4 + ... = ∑ n = 1 ∞ ( n + 1 ) ( n + 2 ) ( n + 3 ) n
since n ( n + 1 ) ( n + 2 ) ( n + 3 ) < 1 n 2 \frac{n}{(n+1)(n+2)(n+3)}<\frac{1}{n^2} ( n + 1 ) ( n + 2 ) ( n + 3 ) n < n 2 1 and series ∑ 1 n 2 \sum \frac{1}{n^2} ∑ n 2 1 converges, then series
∑ n = 1 ∞ n ( n + 1 ) ( n + 2 ) ( n + 3 ) \sum_{n=1}^{\infin}\frac{n}{(n+1)(n+2)(n+3)} ∑ n = 1 ∞ ( n + 1 ) ( n + 2 ) ( n + 3 ) n converges as well
27.
2 − 1 3 3 − 1 + 3 − 1 4 3 − 1 + 4 − 1 5 3 − 1 + . . . = ∑ n = 1 ∞ n − 1 ( n + 1 ) 3 − 1 \frac{\sqrt 2-1}{3^3-1}+\frac{\sqrt 3-1}{4^3-1}+\frac{\sqrt 4-1}{5^3-1}+...=\sum^{\infin}_{n=1}\frac{\sqrt n-1}{(n+1)^3-1} 3 3 − 1 2 − 1 + 4 3 − 1 3 − 1 + 5 3 − 1 4 − 1 + ... = ∑ n = 1 ∞ ( n + 1 ) 3 − 1 n − 1
u n = n − 1 ( n + 1 ) 3 − 1 , v n = 1 n 5 / 2 u_n=\frac{\sqrt n-1}{(n+1)^3-1},v_n=\frac{1}{n^{5/2}} u n = ( n + 1 ) 3 − 1 n − 1 , v n = n 5/2 1
lim n → ∞ ( u n / v n ) = 1 ≠ 0 \displaystyle \lim_{n\to \infin}(u_n/v_n)=1\neq 0 n → ∞ lim ( u n / v n ) = 1 = 0
we know that series ∑ n = 1 ∞ 1 n 5 / 2 \sum^{\infin}_{n=1}\frac{1}{n^{5/2}} ∑ n = 1 ∞ n 5/2 1 converges, so series ∑ n = 1 ∞ n − 1 ( n + 1 ) 3 − 1 \sum^{\infin}_{n=1}\frac{\sqrt n-1}{(n+1)^3-1} ∑ n = 1 ∞ ( n + 1 ) 3 − 1 n − 1 converges as well
28.
2 1 p + 3 2 p + 4 3 p + . . . = ∑ n = 1 ∞ n + 1 n p \frac{2}{1^p}+\frac{3}{2^p}+\frac{4}{3^p}+...=\sum^{\infin}_{n=1}\frac{n+1}{n^p} 1 p 2 + 2 p 3 + 3 p 4 + ... = ∑ n = 1 ∞ n p n + 1
u n = n + 1 n p , v n = 1 n p − 1 u_n=\frac{n+1}{n^p},v_n=\frac{1}{n^{p-1}} u n = n p n + 1 , v n = n p − 1 1
lim n → ∞ ( u n / v n ) = 1 ≠ 0 \displaystyle \lim_{n\to \infin}(u_n/v_n)=1\neq 0 n → ∞ lim ( u n / v n ) = 1 = 0
then:
since series ∑ n = 1 ∞ 1 n p − 1 \sum^{\infin}_{n=1}\frac{1}{n^{p-1}} ∑ n = 1 ∞ n p − 1 1 diverges if p ≤ 2 and converges if p > 2,
same thing for ∑ n = 1 ∞ n + 1 n p \sum^{\infin}_{n=1}\frac{n+1}{n^p} ∑ n = 1 ∞ n p n + 1 : diverges if p ≤ 2 and converges if p > 2
Comments