Question #278403

2. Use change of variables technique to integrate the following

Z

x(3x − 2) 1

2 dx


1
Expert's answer
2021-12-14T02:45:24-0500
x(3x2)1/2dx\int x(3x-2)^{1/2}dx

u=3x2,du=3dxu=3x-2, du=3dx

x=13u+23x=\dfrac{1}{3}u+\dfrac{2}{3}

x(3x2)1/2dx=13(13u+23)u1/2du\int x(3x-2)^{1/2}dx=\dfrac{1}{3}\int(\dfrac{1}{3}u+\dfrac{2}{3})u^{1/2}du

=13(13u3/2+23u1/2)du=\dfrac{1}{3}\int(\dfrac{1}{3}u^{3/2}+\dfrac{2}{3}u^{1/2})du

=13(13(25)u5/2+23(23)u3/2)+C=\dfrac{1}{3}\bigg(\dfrac{1}{3}(\dfrac{2}{5})u^{5/2}+\dfrac{2}{3}(\dfrac{2}{3})u^{3/2}\bigg)+C

=245u5/2+427u3/2+C=\dfrac{2}{45}u^{5/2}+\dfrac{4}{27}u^{3/2}+C

=245(3x2)5/2+427(3x2)3/2+C=\dfrac{2}{45}(3x-2)^{5/2}+\dfrac{4}{27}(3x-2)^{3/2}+C

=2135(3x2)3/2(9x6+10)+C=\dfrac{2}{135}(3x-2)^{3/2}(9x-6+10)+C

=2135(3x2)3/2(9x+4)+C=\dfrac{2}{135}(3x-2)^{3/2}(9x+4)+C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS