(a) Let r=xi + yj+zk and r=∥r∥=x2+y 2 +z2Such that ln(r)=ln(x2+y 2 +z2)Recall that ∇=i∂x∂ + j∂y∂+k∂z∂Then ∇(ln(r))=(i∂x∂ + j∂y∂+k∂z∂)ln(r)∇(ln(r))=(i∂x∂ + j∂y∂+k∂z∂)ln(x2+y 2 +z2)∇(ln(r))=(i∂x∂ln(x2+y 2 +z2) + j∂y∂ln(x2+y 2 +z2)+k∂z∂ln(x2+y 2 +z2))∇(ln(r))=(i∂x∂rx2+y 2 +z21 + j∂y∂rx2+y 2 +z21+k∂z∂rx2+y 2 +z21)∇(ln(r))=x2+y 2 +z21(ix + jy+kz) = (r)2 r(b) Let r=∥r∥=x2+y 2 +z2 and (r)n=(x2+y 2 +z2)n (r)n. (r) = (x2+y 2 +z2)n(x2+y 2 +z2)Then ∇×( (r)n. (r)) = ??Using the identity that ∇×( A. B) = A∇×(B ) − B∇×( A) Then ∇×( (r)n. (r)) = (r)n∇×((r) ) − (r)∇×( (r)n) ∇×( (r)n. (r)) = (r)n∇×((r) ) − (r)∇×( (r)n) = 0−0 = 0 (Since (r)=constant )
Comments