The Laplacian of a function f of n variables x1, x2,⋯xn, denoted ∇2f is defined by ∇2f(x1, x2,⋯xn) := (∂2f/∂x12)+(∂2f/∂x22)+...+(∂2f/∂xn2)
Now assume that f depends only on r where r= (x12+ x22+⋯+x2n)1/2
i.e. f(x1,x2,⋯,xn)=g(r), for some function g
. Show that, for x1,x2,⋯,xn≠0, ∇2f=[(n-1)/r]g′(r)+g′′(r)
r=x12+x22+...+xn2r=\sqrt{x_1^2+x_2^2+...+x_n^2}r=x12+x22+...+xn2
f(x1,x2,...,xn)=g(r)f(x_ 1 ,x_ 2 ,...,x _n )=g(r)f(x1,x2,...,xn)=g(r)
∂r∂xn=xnx12+x22+...+xn2\frac{\partial r}{\partial x_n}=\frac{x_n}{\sqrt{x_1^2+x_2^2+...+x_n^2}}∂xn∂r=x12+x22+...+xn2xn
∂2r∂xn2=x12+x22+...+xn2−xn2/x12+x22+...+xn2x12+x22+...+xn2\frac{\partial^2 r}{\partial x^2_n}=\frac{\sqrt{x_1^2+x_2^2+...+x_n^2}-x^2_n/\sqrt{x_1^2+x_2^2+...+x_n^2}}{x_1^2+x_2^2+...+x_n^2}∂xn2∂2r=x12+x22+...+xn2x12+x22+...+xn2−xn2/x12+x22+...+xn2
∇2f=n/r−x12+x22+...+xn2x12+x22+...+xn2(x12+x22+...+xn2)=n−1r\nabla^2f=n/r-\frac{x_1^2+x_2^2+...+x_n^2}{\sqrt{x_1^2+x_2^2+...+x_n^2}(x_1^2+x_2^2+...+x_n^2)}=\frac{n-1}{r}∇2f=n/r−x12+x22+...+xn2(x12+x22+...+xn2)x12+x22+...+xn2=rn−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments