The Laplacian of a function f of n variables x1, x2,⋯xn, denoted ∇2f is defined by ∇2f(x1, x2,⋯xn) := (∂2f/∂x12)+(∂2f/∂x22)+...+(∂2f/∂xn2)
Now assume that f depends only on r where r= (x12+ x22+⋯+x2n)1/2
i.e. f(x1,x2,⋯,xn)=g(r), for some function g
. Show that, for x1,x2,⋯,xn≠0, ∇2f=[(n-1)/r]g′(r)+g′′(r)
"r=\\sqrt{x_1^2+x_2^2+...+x_n^2}"
"f(x_ 1 ,x_ 2 ,...,x _n )=g(r)"
"\\frac{\\partial r}{\\partial x_n}=\\frac{x_n}{\\sqrt{x_1^2+x_2^2+...+x_n^2}}"
"\\frac{\\partial^2 r}{\\partial x^2_n}=\\frac{\\sqrt{x_1^2+x_2^2+...+x_n^2}-x^2_n\/\\sqrt{x_1^2+x_2^2+...+x_n^2}}{x_1^2+x_2^2+...+x_n^2}"
"\\nabla^2f=n\/r-\\frac{x_1^2+x_2^2+...+x_n^2}{\\sqrt{x_1^2+x_2^2+...+x_n^2}(x_1^2+x_2^2+...+x_n^2)}=\\frac{n-1}{r}"
Comments
Leave a comment