r = x 1 2 + x 2 2 + . . . + x n 2 r=\sqrt{x_1^2+x_2^2+...+x_n^2} r = x 1 2 + x 2 2 + ... + x n 2
f ( x 1 , x 2 , . . . , x n ) = g ( r ) f(x_ 1 ,x_ 2 ,...,x _n )=g(r) f ( x 1 , x 2 , ... , x n ) = g ( r )
∂ r ∂ x n = x n x 1 2 + x 2 2 + . . . + x n 2 \frac{\partial r}{\partial x_n}=\frac{x_n}{\sqrt{x_1^2+x_2^2+...+x_n^2}} ∂ x n ∂ r = x 1 2 + x 2 2 + ... + x n 2 x n
∂ 2 r ∂ x n 2 = x 1 2 + x 2 2 + . . . + x n 2 − x n 2 / x 1 2 + x 2 2 + . . . + x n 2 x 1 2 + x 2 2 + . . . + x n 2 \frac{\partial^2 r}{\partial x^2_n}=\frac{\sqrt{x_1^2+x_2^2+...+x_n^2}-x^2_n/\sqrt{x_1^2+x_2^2+...+x_n^2}}{x_1^2+x_2^2+...+x_n^2} ∂ x n 2 ∂ 2 r = x 1 2 + x 2 2 + ... + x n 2 x 1 2 + x 2 2 + ... + x n 2 − x n 2 / x 1 2 + x 2 2 + ... + x n 2
∇ 2 f = n / r − x 1 2 + x 2 2 + . . . + x n 2 x 1 2 + x 2 2 + . . . + x n 2 ( x 1 2 + x 2 2 + . . . + x n 2 ) = n − 1 r \nabla^2f=n/r-\frac{x_1^2+x_2^2+...+x_n^2}{\sqrt{x_1^2+x_2^2+...+x_n^2}(x_1^2+x_2^2+...+x_n^2)}=\frac{n-1}{r} ∇ 2 f = n / r − x 1 2 + x 2 2 + ... + x n 2 ( x 1 2 + x 2 2 + ... + x n 2 ) x 1 2 + x 2 2 + ... + x n 2 = r n − 1
Comments