Answer to Question #278282 in Calculus for Pial

Question #278282

Given that U is a function of x, y and z and A a vector field, prove that:

∇⋅(UA)=(∇U)⋅A+U(∇⋅A).



1
Expert's answer
2021-12-14T09:55:15-0500

(UA)=x(UAx)+y(UAy)+z(UAz)=∇⋅(UA)=\frac{\partial}{\partial x}(UA_x)+\frac{\partial}{\partial y}(UA_y)+\frac{\partial}{\partial z}(UA_z)=


=Ux(Ax)+Uy(Ay)+Uz(Az)+Axx(U)+Ayy(U)+Azz(U)==\frac{\partial U}{\partial x}(A_x)+\frac{\partial U}{\partial y}(A_y)+\frac{\partial U}{\partial z}(A_z)+\frac{\partial A_x}{\partial x}(U)+\frac{\partial A_y}{\partial y}(U)+\frac{\partial A_z}{\partial z}(U)=


=(U)A+U(A)=(∇U)⋅A+U(∇⋅A)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment