Given that U is a function of x, y and z and A a vector field, prove that:
∇⋅(UA)=(∇U)⋅A+U(∇⋅A).
∇⋅(UA)=∂∂x(UAx)+∂∂y(UAy)+∂∂z(UAz)=∇⋅(UA)=\frac{\partial}{\partial x}(UA_x)+\frac{\partial}{\partial y}(UA_y)+\frac{\partial}{\partial z}(UA_z)=∇⋅(UA)=∂x∂(UAx)+∂y∂(UAy)+∂z∂(UAz)=
=∂U∂x(Ax)+∂U∂y(Ay)+∂U∂z(Az)+∂Ax∂x(U)+∂Ay∂y(U)+∂Az∂z(U)==\frac{\partial U}{\partial x}(A_x)+\frac{\partial U}{\partial y}(A_y)+\frac{\partial U}{\partial z}(A_z)+\frac{\partial A_x}{\partial x}(U)+\frac{\partial A_y}{\partial y}(U)+\frac{\partial A_z}{\partial z}(U)==∂x∂U(Ax)+∂y∂U(Ay)+∂z∂U(Az)+∂x∂Ax(U)+∂y∂Ay(U)+∂z∂Az(U)=
=(∇U)⋅A+U(∇⋅A)=(∇U)⋅A+U(∇⋅A)=(∇U)⋅A+U(∇⋅A)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment