Answer to Question #278282 in Calculus for Pial

Question #278282

Given that U is a function of x, y and z and A a vector field, prove that:

∇⋅(UA)=(∇U)⋅A+U(∇⋅A).



1
Expert's answer
2021-12-14T09:55:15-0500

"\u2207\u22c5(UA)=\\frac{\\partial}{\\partial x}(UA_x)+\\frac{\\partial}{\\partial y}(UA_y)+\\frac{\\partial}{\\partial z}(UA_z)="


"=\\frac{\\partial U}{\\partial x}(A_x)+\\frac{\\partial U}{\\partial y}(A_y)+\\frac{\\partial U}{\\partial z}(A_z)+\\frac{\\partial A_x}{\\partial x}(U)+\\frac{\\partial A_y}{\\partial y}(U)+\\frac{\\partial A_z}{\\partial z}(U)="


"=(\u2207U)\u22c5A+U(\u2207\u22c5A)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog