Question #278273

Evaluate


∫ √tanx. sec4x dx

π

4



Also integrate the definite integral using MATLAB command.


1
Expert's answer
2021-12-13T16:09:06-0500

I=0π/4tanxsec4xdx=0π/4tanx(1+tan2x)sec2xdxI=\int^{\pi /4}_0 \sqrt{tanx}sec^4x dx=\int^{\pi /4}_0 \sqrt{tanx}(1+tan^2x)sec^2xdx


tanx=t,sec2x=dttanx=t,sec^2x=dt


I=(t1/2+t5/2)dt=2t3/2/3+2t7/2/7=2tan3/2x/3+2tan7/2x/70π/4=I=\int(t^{1/2}+t^{5/2})dt=2t^{3/2}/3+2t^{7/2}/7=2tan^{3/2}x/3+2tan^{7/2}x/7|^{\pi/4}_0=


=2/3+2/7=20/21=2/3+2/7=20/21


MATLAB code

syms x
expr=sqrt(tanx)*(secx)^4;
F=int(expr,0,pi/4)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS