Question #278394

Given that U is a function of x, y, and z

and A a vector field, prove that:


∇×(UA)=(∇U)×A+U(∇×A).


1
Expert's answer
2021-12-13T17:53:37-0500

Given:- U is a scalar function of x, y, z and A is a vector field

Let A1,A2,A3A_{1}, A_{2}, A_{3} are components of A

 (UA)=x(UA1)+y(UA2)+z(UA3)\therefore \nabla \cdot(U A)=\frac{\partial}{\partial x}\left(U A_{1}\right)+\frac{\partial}{\partial y}\left(U A_{2}\right)+\frac{\partial}{\partial z}\left(U A_{3}\right)  

using product rule

(UA)=[(Ux)A1+UA1x]+[(Uy)A2+U(A2y)]+[(Uz)A3+U(A3z)]=UxA1+UyA2+UzA3+U(A1x+A2y+A3z)=(Uxı^+Uyj^+Uzk^)(A1i^+A2ȷ^+A3k^)+U(A)\begin{aligned} \nabla \cdot(U A) &=\left[\left(\frac{\partial U}{\partial x}\right) A_{1}+U \frac{\partial A_{1}}{\partial x}\right]+\left[\left(\frac{\partial U}{\partial y}\right) A_{2}+U\left(\frac{\partial A_{2}}{\partial y}\right)\right] \\ &+\left[\left(\frac{\partial U}{\partial z}\right) A_{3}+U\left(\frac{\partial A_{3}}{\partial z}\right)\right] \\ &=\frac{\partial U}{\partial x} A_{1}+\frac{\partial U}{\partial y} A_{2}+\frac{\partial U}{\partial z} A_{3}+U\left(\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}\right) \\ &=\left(\frac{\partial U}{\partial x} \hat{\imath}+\frac{\partial U}{\partial y} \hat{j}+\frac{\partial U}{\partial z} \hat{k}\right) \cdot\left(A_{1} \hat{i}+A_{2} \hat{\jmath}+A_{3} \hat{k}\right)+U(\nabla \cdot A) \end{aligned}

we recognize

(A)=()A+U(A) Hence proved \nabla \cdot(\cup A)=(\nabla \cup) \cdot A+U(\nabla \cdot A) \\ \text { Hence proved }

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS