Given:- U is a scalar function of x, y, z and A is a vector field
Let A1,A2,A3 are components of A
∴∇⋅(UA)=∂x∂(UA1)+∂y∂(UA2)+∂z∂(UA3)
using product rule
∇⋅(UA)=[(∂x∂U)A1+U∂x∂A1]+[(∂y∂U)A2+U(∂y∂A2)]+[(∂z∂U)A3+U(∂z∂A3)]=∂x∂UA1+∂y∂UA2+∂z∂UA3+U(∂x∂A1+∂y∂A2+∂z∂A3)=(∂x∂U^+∂y∂Uj^+∂z∂Uk^)⋅(A1i^+A2^+A3k^)+U(∇⋅A)
we recognize
∇⋅(∪A)=(∇∪)⋅A+U(∇⋅A) Hence proved
Comments