Answer to Question #277988 in Calculus for Nitya

Question #277988

3. a) Define tangent and normal of a curve with figure. Also find the equation of tangent and normal of the ellipse (x ^ 2)/4 + (y ^ 2)/16 = 1 at the point (- 1, 3) .

b) Explain maximum and minimum value of a function with graphically. Evaluate maximum and minimum value of the function f(x) = x ^ 3 - 3x ^ 2 + 3x + 1



1
Expert's answer
2021-12-17T07:51:51-0500

Solution:


a) A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal curve is a line perpendicular to a tangent to the curve.




equation of tangent:



"y-y_0=f'(x_0)(x-x_0)"


"y= \n\\sqrt{16\u22124x ^2\n\u200b}"




"y \n\u2032\n =\\frac{\u22124x}{\\sqrt{16\u22124x ^2\n\u200b}\n}"


"y'(-1)=\\frac{2}{\\sqrt 3}"


"y-3=\\frac{2(x+1)}{\\sqrt3}"


"y=\\frac{2x}{\\sqrt3}+\\frac{2}{\\sqrt3}+3"

equation of normal:



"y-y_o=\\frac{-(x-x_o)}{f \n\u2032\n (x_o\n )}"


"y-3=\\frac{-\\sqrt3(x+1)}{2}"

"2y=-x\\sqrt3+6-\\sqrt3"

b) function f defined on a domain X has a global (or absolute) maximum point at x, if f(x) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at x, if f(x) ≤ f(x) for all x in X

f is said to have a local (or relative) maximum point at the point xif there exists some ε > 0 such that f(x) ≥ f(x) for all x in X within distance ε of x. Similarly, the function has a local minimum point at x, if f(x) ≤ f(x) for all x in X within distance ε of x






"f \n^\u2032\n (x)=3x \n^2\n \u22126x+3x=0"

"x=\\frac{2\u00b1\\sqrt{4-4}}{2}=1"

since f'(x) does not change sign at x = 1, there is no local extremum

so, since


"f(x)\\to \\infin" for "x\\to \\infin"


and


"f(x)\\to - \\infin" for "x\\to -\\infin"


then there is no global minima or maxima



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog