Question #277988

3. a) Define tangent and normal of a curve with figure. Also find the equation of tangent and normal of the ellipse (x ^ 2)/4 + (y ^ 2)/16 = 1 at the point (- 1, 3) .

b) Explain maximum and minimum value of a function with graphically. Evaluate maximum and minimum value of the function f(x) = x ^ 3 - 3x ^ 2 + 3x + 1



1
Expert's answer
2021-12-17T07:51:51-0500

Solution:


a) A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal curve is a line perpendicular to a tangent to the curve.




equation of tangent:



yy0=f(x0)(xx0)y-y_0=f'(x_0)(x-x_0)


y=164x2y= \sqrt{16−4x ^2 ​}




y=4x164x2y ′ =\frac{−4x}{\sqrt{16−4x ^2 ​} }


y(1)=23y'(-1)=\frac{2}{\sqrt 3}


y3=2(x+1)3y-3=\frac{2(x+1)}{\sqrt3}


y=2x3+23+3y=\frac{2x}{\sqrt3}+\frac{2}{\sqrt3}+3

equation of normal:



yyo=(xxo)f(xo)y-y_o=\frac{-(x-x_o)}{f ′ (x_o )}


y3=3(x+1)2y-3=\frac{-\sqrt3(x+1)}{2}

2y=x3+632y=-x\sqrt3+6-\sqrt3

b) function f defined on a domain X has a global (or absolute) maximum point at x, if f(x) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at x, if f(x) ≤ f(x) for all x in X

f is said to have a local (or relative) maximum point at the point xif there exists some ε > 0 such that f(x) ≥ f(x) for all x in X within distance ε of x. Similarly, the function has a local minimum point at x, if f(x) ≤ f(x) for all x in X within distance ε of x






f(x)=3x26x+3x=0f ^′ (x)=3x ^2 −6x+3x=0

x=2±442=1x=\frac{2±\sqrt{4-4}}{2}=1

since f'(x) does not change sign at x = 1, there is no local extremum

so, since


f(x)f(x)\to \infin for xx\to \infin


and


f(x)f(x)\to - \infin for xx\to -\infin


then there is no global minima or maxima



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS