Evaluate "\\intop"x2(1 + 2x3)3dx.
2. Evaluate "\\intop"xe7x dx.
3. Find the volume of the solid of revolution when the curve y = 1 + x2 is revolved around the x-axis on [−2, 2].
"\\left(\\mathrm{1}\\right)\\ \\ I=\\int{x^{\\mathrm{2}}{\\left(\\mathrm{1}+\\mathrm{2}x^{\\mathrm{3}}\\right)}^{\\mathrm{3}}dx\\ \\ } \\\\ \nBy\\ \\ substitution\\ \\ method,\\ \\ let\\ \\ u=\\mathrm{1}+\\mathrm{2}x^{\\mathrm{3}} \\\\ \nSuch\\ \\ that\\ \\ du\\ \\ =\\ \\ \\mathrm{6}x^{\\mathrm{2}}\\ \\ dx\\ \\ \\ \\\\ \nI=\\int{x^{\\mathrm{2}}{\\left(\\mathrm{1}+\\mathrm{2}x^{\\mathrm{3}}\\right)}^{\\mathrm{3}}dx\\ \\ }=I=\\int{\\rlap{\\textbackslash}x^{\\mathrm{2}}u^{\\mathrm{3}}\\frac{du}{\\mathrm{6}\\rlap{\\textbackslash}x^{\\mathrm{2}}}\\ \\ } \\\\ \nI=\\frac{\\mathrm{1}}{\\mathrm{4}}\\int{u^{\\mathrm{3}}du\\ \\ }=\\ \\ \\frac{u^{\\mathrm{4}}}{\\mathrm{24}}+C \\\\ \nI=\\frac{{\\left(\\mathrm{1}+\\mathrm{2}x^{\\mathrm{3}}\\right)}^{\\mathrm{4}}}{\\mathrm{24}}+C \\\\ \n \\\\ \n\\left(\\mathrm{2}\\right)\\ \\ I\\ =\\int{x\\ e^{\\mathrm{7}x}\\ \\ dx} \\\\ \nU\\mathrm{sin}g\\ \\ \\mathrm{int}egration\\ \\ by\\ \\ part\\ \\ \\ \\\\ \nu=x\\ \\ \\ ,\\ \\ dv=e^{\\mathrm{7}x}\\ \\ dx \\\\ \ndu=\\mathrm{1}\\ \\ ,\\ \\ v=\\frac{e^{\\mathrm{7}x}\\ \\ }{\\mathrm{7}} \\\\ \n\\int{udv}=uv\\ \\ -\\ \\ \\int{v\\ \\ du\\ } \\\\ \n \\\\ \nI=\\frac{xe^{\\mathrm{7}x}\\ \\ }{\\mathrm{7}}-\\frac{\\mathrm{1}}{\\mathrm{7}}\\int{\\ e^{\\mathrm{7}x}\\ \\ dx} \\\\ \n \\\\ \nI=\\frac{xe^{\\mathrm{7}x}\\ \\ }{\\mathrm{7}}-\\frac{e^{\\mathrm{7}x}}{\\mathrm{49}}+C \\\\ \n \\\\ \n\\left(\\mathrm{3}\\right)\\ \\ y=\\mathrm{1}+x^{\\mathrm{2}} \\\\ \nU\\mathrm{sin}g\\ \\ method\\ \\ of\\ \\ disk \\\\ \nV\\ \\ =\\ \\ \\int^{\\mathrm{2}}_{-\\mathrm{2}}{\\pi y^{\\mathrm{2}}dx\\ \\ \\ =\\ \\ }\\int^{\\mathrm{2}}_{-\\mathrm{2}}{\\pi {\\left(\\mathrm{1}+x^{\\mathrm{2}}\\right)}^{\\mathrm{2}}dx} \\\\ \n \\\\ \nV\\ \\ =\\ \\ \\int^{\\mathrm{2}}_{-\\mathrm{2}}{\\pi \\left(\\mathrm{1}+\\mathrm{2}x^{\\mathrm{2}}+x^{\\mathrm{4}}\\right)dx} \\\\ \n \\\\ \nV=\\frac{\\mathrm{412}\\pi }{\\mathrm{15}}"
Comments
Leave a comment