Answer to Question #277777 in Calculus for n hasan

Question #277777

a) Define tangent and normal of a curve with figure. Also find the equation of tangent and normal of the ellipse (x ^ 2)/4 + (y ^ 2)/16 = 1 at the point (- 1, 3) .

b) Explain maximum and minimum value of a function with graphically. Evaluate maximum and minimum value of the function f(x) = x ^ 3 - 3x ^ 2 + 3x + 1



1
Expert's answer
2021-12-13T17:12:06-0500

a)

A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal to a curve is a line perpendicular to a tangent to the curve.



equation of tangent:

"y-y_0=f'(x_0)(x-x_0)"


"y=\\sqrt{16-4x^2}"

"y'=-4x\/\\sqrt{16-4x^2}"

"y'(-1)=2\/\\sqrt 3"


"y-3=2(x+1)\/\\sqrt 3"

"y=2x\/\\sqrt 3+2\/\\sqrt 3+3"


equation of normal:

"y-y_0=-(x-x_0)\/f'(x_0)"

"y-3=-\\sqrt 3(x+1)\/2"

"2y=-x\\sqrt 3+6-\\sqrt 3"


b)

function f defined on a domain X has a global (or absolute) maximum point at x, if f(x) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at x, if f(x) ≤ f(x) for all x in X

f is said to have a local (or relative) maximum point at the point x, if there exists some ε > 0 such that f(x) ≥ f(x) for all x in X within distance ε of x. Similarly, the function has a local minimum point at x, if f(x) ≤ f(x) for all x in X within distance ε of x

"f'(x) = 3x ^ 2 - 6x + 3x =0"


"x=\\frac{2\\pm \\sqrt{4-4}}{2}=1"

since f'(x) does not change sign at x = 1, there is no local extremum


so, since

"f(x)\\to \\infin" for "x\\to \\infin"

and

"f(x)\\to -\\infin" for "x\\to -\\infin"

then there is no global minima or maxima





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog