Question #277777

a) Define tangent and normal of a curve with figure. Also find the equation of tangent and normal of the ellipse (x ^ 2)/4 + (y ^ 2)/16 = 1 at the point (- 1, 3) .

b) Explain maximum and minimum value of a function with graphically. Evaluate maximum and minimum value of the function f(x) = x ^ 3 - 3x ^ 2 + 3x + 1



1
Expert's answer
2021-12-13T17:12:06-0500

a)

A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal to a curve is a line perpendicular to a tangent to the curve.



equation of tangent:

yy0=f(x0)(xx0)y-y_0=f'(x_0)(x-x_0)


y=164x2y=\sqrt{16-4x^2}

y=4x/164x2y'=-4x/\sqrt{16-4x^2}

y(1)=2/3y'(-1)=2/\sqrt 3


y3=2(x+1)/3y-3=2(x+1)/\sqrt 3

y=2x/3+2/3+3y=2x/\sqrt 3+2/\sqrt 3+3


equation of normal:

yy0=(xx0)/f(x0)y-y_0=-(x-x_0)/f'(x_0)

y3=3(x+1)/2y-3=-\sqrt 3(x+1)/2

2y=x3+632y=-x\sqrt 3+6-\sqrt 3


b)

function f defined on a domain X has a global (or absolute) maximum point at x, if f(x) ≥ f(x) for all x in X. Similarly, the function has a global (or absolute) minimum point at x, if f(x) ≤ f(x) for all x in X

f is said to have a local (or relative) maximum point at the point x, if there exists some ε > 0 such that f(x) ≥ f(x) for all x in X within distance ε of x. Similarly, the function has a local minimum point at x, if f(x) ≤ f(x) for all x in X within distance ε of x

f(x)=3x26x+3x=0f'(x) = 3x ^ 2 - 6x + 3x =0


x=2±442=1x=\frac{2\pm \sqrt{4-4}}{2}=1

since f'(x) does not change sign at x = 1, there is no local extremum


so, since

f(x)f(x)\to \infin for xx\to \infin

and

f(x)f(x)\to -\infin for xx\to -\infin

then there is no global minima or maxima





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS