ANSWER
a) If x3+y3=3 , then y(x)=(3−x3)31=f(g(x)). g(x)=3−x3 , f(x)=x1/3 . By the Chain Rule, we have y′(x)=f′(g(x))⋅g′(x) . g′(x)=−3x2, f′(x)=31x−32 . Hence
y′(x)=−31(3−x3)−32⋅3x2=−(3−x3)−32⋅ x2 .
b) Since ab=eb lna(a>0) , then y(x)=e(tanx)⋅ln(sinx).So, by the Chain Rule:
y′(x)=e(tanx)⋅ln(sinx) [(tanx)⋅ln(sinx)]′.
[(tanx)⋅ln(sinx)]′=
=(secx)2⋅ln(sinx)+(tanx)⋅[ sinxcosx]=
=(secx)2⋅ln(sinx)+1. Therefore,
y′(x)=(sinx)tanx⋅[(secx)2⋅ln(sinx)+1]
Comments