Question #277769

Find the derivatives of the following functions with respect to x.

𝑥3 + 𝑦3 = 3                                                                                                                   

𝑦 = (sin 𝑥)𝑡𝑎𝑛𝑥

1
Expert's answer
2021-12-10T08:51:38-0500

ANSWER

a) If x3+y3=3{ x }^{ 3 }+{ y }^{ 3 }=3 , then y(x)=(3x3)13=f(g(x)). g(x)=3x3 , f(x)=x1/3y(x)={ { \left( 3-{ x }^{ 3 } \right) }^{ \frac { 1 }{ 3 } }=f(g(x)) }.\ g(x)=3-{ x }^{ 3 }\ ,\ f(x)={ x }^{ 1/3 } . By the Chain Rule, we have y(x)=f(g(x))g(x)y'(x)=f'(g(x))\cdot g'(x) . g(x)=3x2, f(x)=13x23g'(x)=-3{ x }^{ 2 }\quad ,\ f'(x)=\frac { 1 }{ 3 } { x }^{ -\frac { 2 }{ 3 } } . Hence


y(x)=13(3x3)233x2=(3x3)23 x2y'(x)=-\frac { 1 }{ 3 } { \left( 3-{ x }^{ 3 } \right) }^{ -\frac { 2 }{ 3 } }\cdot 3{ x }^{ 2 }=-{ \left( 3-{ x }^{ 3 } \right) }^{ -\frac { 2 }{ 3 } }\cdot \ { x }^{ 2 } .


b) Since ab=eb lna(a>0){ a }^{ b }={ e }^{ b\ lna }\quad (a>0) , then y(x)=e(tanx)ln(sinx)y(x)={ { e }^{ (\tan { x } )\cdot \ln { (\sin { x) } } \quad } }.So, by the Chain Rule:

y(x)=e(tanx)ln(sinx) [(tanx)ln(sinx)].y'(x)={ e }^{ (\tan { x } )\cdot \ln { (\sin { x) } } \ }\left[ (\tan { x } )\cdot \ln { (\sin { x) } } \right] '.

[(tanx)ln(sinx)]=\left[ (\tan { x } )\cdot \ln { (\sin { x) } } \right] '=

=(secx)2ln(sinx)+(tanx)[ cosxsinx]=={ (\sec { x) } }^{ 2 }\cdot \ln { (\sin { x) } } +(\tan { x } )\cdot \left[ \ \frac { \cos { x } }{ \sin { x } } \right] =

=(secx)2ln(sinx)+1.= { (\sec { x) } }^{ 2 }\cdot \ln { (\sin { x) } } +1. Therefore,


y(x)=(sinx)tanx[(secx)2ln(sinx)+1]\quad y'(x)=({ \sin { x) } }^{ \tan { x } }\cdot \left[ { (\sec { x) } }^{ 2 }\cdot \ln { (\sin { x) } } +1 \right]



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS