If A(u) is a differentiable vector function of u and ||A(u)||=1 , prove that dA/du is perpendicular to A
Given that "\\vec{A}(U)" is vector function.
Given that "\\|\\vec{A}(u)\\|=1"
"\\begin{aligned}\n\n&\\Rightarrow(\\|\\vec{A}(u)\\|)^{2}=(1)^{2} \\\\\n\n&\\Rightarrow \\vec{A}(u) \\cdot \\vec{A}(u)=1 \\\\\n\n&\\Rightarrow\\left[\\begin{array}{c}\n\n\\because \\cdot \\vec{B} \\|^{2}=\\vec{B} \\cdot \\vec{B} \\\\\n\n\\text { for any vector } \\vec{B}\n\n\\end{array}\\right] \\\\\n\n&\\Rightarrow \\frac{d}{d u}(\\vec{A}(u) \\cdot \\vec{A}(u))=\\frac{d}{d u}(1) \\\\\n\n&\\Rightarrow \\vec{A}(u) \\cdot \\frac{d}{d u}(\\vec{A}(u))+\\frac{d}{d u}(\\vec{A}(u)) \\cdot \\vec{A}(u)=0 \\\\\n\n&\\because \\frac{d}{d u}(\\operatorname{constan} t)=0 \\\\\n\n&\\frac{d}{d u}(\\vec{B} \\cdot \\vec{C})=\\vec{B} \\cdot \\frac{d}{d u}(\\vec{C})+\\frac{d}{d u}(\\vec{B}) \\cdot \\vec{C} \\\\\n\n&\\operatorname{here} \\vec{B}=\\vec{C}=\\vec{A}(u) \\\\\n\n&\\Rightarrow \\vec{A} \\cdot \\frac{d \\vec{A}}{d u}+\\frac{d \\vec{A}}{d u} \\cdot \\vec{A}=0\n\n\\end{aligned}"
"\\begin{aligned}\n&\\Rightarrow \\vec{A} \\cdot \\frac{d \\vec{A}}{d u}+\\vec{A} \\cdot \\frac{d \\vec{A}}{d u}=0 \\\\\n&\\because \\vec{B} \\cdot \\vec{C}=\\vec{C} \\cdot \\vec{B} \\\\\n&\\text { here } \\left.\\vec{B}=\\frac{d \\vec{A}}{d u}, \\quad C=\\vec{A}\\right] \\\\\n&\\Rightarrow \\quad 2\\left(\\vec{A} \\cdot \\frac{d \\vec{A}}{d u}\\right)=0 \\\\\n&\\Rightarrow \\quad \\vec{A} \\cdot \\frac{d \\vec{A}}{d u}=0 \\\\\n&\\Rightarrow \\frac{d \\vec{A}}{d u} \\text { is perpendicular to } \\vec{A} \\text {. } \\\\\n&\\text { ar } \\vec{B} \\cdot \\vec{C}=0 \\\\\n&\\Rightarrow \\vec{C} \\text { is perpendicular to } \\vec{B}] \\\\\n&\\text { so } \\frac{d \\vec{A}}{d u} \\text { is perpendicular to } \\vec{A} \\text {. } \\\\\n&\\text { Hence proved. }\n\\end{aligned}"
Comments
Leave a comment