Given that A ⃗ ( U ) \vec{A}(U) A ( U ) is vector function.
Given that ∥ A ⃗ ( u ) ∥ = 1 \|\vec{A}(u)\|=1 ∥ A ( u ) ∥ = 1
⇒ ( ∥ A ⃗ ( u ) ∥ ) 2 = ( 1 ) 2 ⇒ A ⃗ ( u ) ⋅ A ⃗ ( u ) = 1 ⇒ [ ∵ ⋅ B ⃗ ∥ 2 = B ⃗ ⋅ B ⃗ for any vector B ⃗ ] ⇒ d d u ( A ⃗ ( u ) ⋅ A ⃗ ( u ) ) = d d u ( 1 ) ⇒ A ⃗ ( u ) ⋅ d d u ( A ⃗ ( u ) ) + d d u ( A ⃗ ( u ) ) ⋅ A ⃗ ( u ) = 0 ∵ d d u ( constan t ) = 0 d d u ( B ⃗ ⋅ C ⃗ ) = B ⃗ ⋅ d d u ( C ⃗ ) + d d u ( B ⃗ ) ⋅ C ⃗ here B ⃗ = C ⃗ = A ⃗ ( u ) ⇒ A ⃗ ⋅ d A ⃗ d u + d A ⃗ d u ⋅ A ⃗ = 0 \begin{aligned}
&\Rightarrow(\|\vec{A}(u)\|)^{2}=(1)^{2} \\
&\Rightarrow \vec{A}(u) \cdot \vec{A}(u)=1 \\
&\Rightarrow\left[\begin{array}{c}
\because \cdot \vec{B} \|^{2}=\vec{B} \cdot \vec{B} \\
\text { for any vector } \vec{B}
\end{array}\right] \\
&\Rightarrow \frac{d}{d u}(\vec{A}(u) \cdot \vec{A}(u))=\frac{d}{d u}(1) \\
&\Rightarrow \vec{A}(u) \cdot \frac{d}{d u}(\vec{A}(u))+\frac{d}{d u}(\vec{A}(u)) \cdot \vec{A}(u)=0 \\
&\because \frac{d}{d u}(\operatorname{constan} t)=0 \\
&\frac{d}{d u}(\vec{B} \cdot \vec{C})=\vec{B} \cdot \frac{d}{d u}(\vec{C})+\frac{d}{d u}(\vec{B}) \cdot \vec{C} \\
&\operatorname{here} \vec{B}=\vec{C}=\vec{A}(u) \\
&\Rightarrow \vec{A} \cdot \frac{d \vec{A}}{d u}+\frac{d \vec{A}}{d u} \cdot \vec{A}=0
\end{aligned} ⇒ ( ∥ A ( u ) ∥ ) 2 = ( 1 ) 2 ⇒ A ( u ) ⋅ A ( u ) = 1 ⇒ [ ∵ ⋅ B ∥ 2 = B ⋅ B for any vector B ] ⇒ d u d ( A ( u ) ⋅ A ( u )) = d u d ( 1 ) ⇒ A ( u ) ⋅ d u d ( A ( u )) + d u d ( A ( u )) ⋅ A ( u ) = 0 ∵ d u d ( constan t ) = 0 d u d ( B ⋅ C ) = B ⋅ d u d ( C ) + d u d ( B ) ⋅ C here B = C = A ( u ) ⇒ A ⋅ d u d A + d u d A ⋅ A = 0
⇒ A ⃗ ⋅ d A ⃗ d u + A ⃗ ⋅ d A ⃗ d u = 0 ∵ B ⃗ ⋅ C ⃗ = C ⃗ ⋅ B ⃗ here B ⃗ = d A ⃗ d u , C = A ⃗ ] ⇒ 2 ( A ⃗ ⋅ d A ⃗ d u ) = 0 ⇒ A ⃗ ⋅ d A ⃗ d u = 0 ⇒ d A ⃗ d u is perpendicular to A ⃗ . ar B ⃗ ⋅ C ⃗ = 0 ⇒ C ⃗ is perpendicular to B ⃗ ] so d A ⃗ d u is perpendicular to A ⃗ . Hence proved. \begin{aligned}
&\Rightarrow \vec{A} \cdot \frac{d \vec{A}}{d u}+\vec{A} \cdot \frac{d \vec{A}}{d u}=0 \\
&\because \vec{B} \cdot \vec{C}=\vec{C} \cdot \vec{B} \\
&\text { here } \left.\vec{B}=\frac{d \vec{A}}{d u}, \quad C=\vec{A}\right] \\
&\Rightarrow \quad 2\left(\vec{A} \cdot \frac{d \vec{A}}{d u}\right)=0 \\
&\Rightarrow \quad \vec{A} \cdot \frac{d \vec{A}}{d u}=0 \\
&\Rightarrow \frac{d \vec{A}}{d u} \text { is perpendicular to } \vec{A} \text {. } \\
&\text { ar } \vec{B} \cdot \vec{C}=0 \\
&\Rightarrow \vec{C} \text { is perpendicular to } \vec{B}] \\
&\text { so } \frac{d \vec{A}}{d u} \text { is perpendicular to } \vec{A} \text {. } \\
&\text { Hence proved. }
\end{aligned} ⇒ A ⋅ d u d A + A ⋅ d u d A = 0 ∵ B ⋅ C = C ⋅ B here B = d u d A , C = A ] ⇒ 2 ( A ⋅ d u d A ) = 0 ⇒ A ⋅ d u d A = 0 ⇒ d u d A is perpendicular to A . ar B ⋅ C = 0 ⇒ C is perpendicular to B ] so d u d A is perpendicular to A . Hence proved.
Comments