xt′=cost,yt′=cos(t+sint)(1+cost)
yx′=xt′yt′=costcos(t+sint)(1+cost) At the origin we have: x=0 and y=0.
x=0=>sint=0=>t=πn,n∈ZFor 0≤t≤2π we have t1=0,t2=π,t3=2π.
Check for y
t1=0,y(0)=sin(0+sin(0))=0,True
t2=π,y(π)=sin(π+sin(π))=0,True
t3=2π,y(2π)=sin(2π+sin(2π))=0,TrueSo y is also satisfied. Put these values of t into yx′ to find the gradient of the tangent line:
t1=0,
yx′∣t=0=cos(0)cos(0+sin(0))(1+cos(0))=2
slope1=m1=2 The equation of the tangent line is
y−0=2(x−0)
y=2x
t2=π,
yx′∣t=π=cos(π)cos(π+sin(π))(1+cos(π))=0
slope2=m2=0 The equation of the tangent line is
y−0=0(x−0)
y=0
t3=2π,
yx′∣t=2π=cos(2π)cos(2π+sin(2π))(1+cos(2π))=0
slope3=m3=2=m1 The equation of the tangent line is
y=2x Therefore our two tangents at the origin will be:
y1=2x,y2=0
Comments