Taking
x u x + y u y = 0 with u ( x , y ) = x on x 2 + y 2 = 1 x u_{x}+y u_{y}=0 \text { with } u(x, y)=x \text { on } x^{2}+y^{2}=1 x u x + y u y = 0 with u ( x , y ) = x on x 2 + y 2 = 1
Due to the contour conditions we will consider the change of variables
x = r cos θ y = r sin θ \begin{aligned}
&x=r \cos \theta \\
&y=r \sin \theta
\end{aligned} x = r cos θ y = r sin θ
with
d x = d r cos θ − r sin θ d θ d y = d r sin θ + r cos θ d θ \begin{aligned}
&d x=d r \cos \theta-r \sin \theta d \theta \\
&d y=d r \sin \theta+r \cos \theta d \theta
\end{aligned} d x = d r cos θ − r sin θ d θ d y = d r sin θ + r cos θ d θ
we have
u x = u r d r d x + u θ d θ d x u y = u r d r d y + u θ d θ d y \begin{aligned}
&u_{x}=u_{r} \frac{d r}{d x}+u_{\theta} \frac{d \theta}{d x} \\
&u_{y}=u_{r} \frac{d r}{d y}+u_{\theta} \frac{d \theta}{d y}
\end{aligned} u x = u r d x d r + u θ d x d θ u y = u r d y d r + u θ d y d θ
Here from the characteristic curves
d x x = d y y ⇒ d y d x = y x = tan θ \frac{d x}{x}=\frac{d y}{y} \Rightarrow \frac{d y}{d x}=\frac{y}{x}=\tan \theta x d x = y d y ⇒ d x d y = x y = tan θ
So, we obtain
x u x + y u y = 0 ⟺ 2 r u r = 0 ⇒ u ( r , θ ) = C + Φ ( θ ) x u_{x}+y u_{y}=0 \Longleftrightarrow 2 r u_{r}=0 \Rightarrow u(r, \theta)=C+\Phi(\theta) x u x + y u y = 0 ⟺ 2 r u r = 0 ⇒ u ( r , θ ) = C + Φ ( θ )
Note that
d r d x = 1 cos θ d r d y = 1 sin θ d θ d x = 0 d θ d y = 0 \begin{aligned}
\frac{d r}{d x} &=\frac{1}{\cos \theta} \\
\frac{d r}{d y} &=\frac{1}{\sin \theta} \\
\frac{d \theta}{d x} &=0 \\
\frac{d \theta}{d y} &=0
\end{aligned} d x d r d y d r d x d θ d y d θ = cos θ 1 = sin θ 1 = 0 = 0
Now with the boundary conditions
u ( 1 , θ ) = cos θ ⇒ Φ ( θ ) = cos θ and C = 0 u(1, \theta)=\cos \theta \Rightarrow \Phi(\theta)=\cos \theta \text { and } C=0 u ( 1 , θ ) = cos θ ⇒ Φ ( θ ) = cos θ and C = 0
and finally
u ( r , θ ) = cos θ u(r, \theta)=\cos \theta u ( r , θ ) = cos θ
or in (x, y) coordinates, u ( x , y ) = x x 2 + y 2 u(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}} u ( x , y ) = x 2 + y 2 x
Comments