a,Calculate the area under the curve 𝑦 = 𝑥3 + 4𝑥 + 1 from x=-3 to x=3. 5
b) Evaluate: ∫4 𝑥𝑒𝑥 dx.
a)
∫−33,5(x3+4x+1)dx=(x44+2x2+x)∣−33,5=((3,5)44−(−3)44)++(2∗(3,5)2−2∗(−3)2)+(3,5−(−3))=150,0625−814+2∗(12,25−9)+6,5==17,265625+6,5+6,5=30,265625\displaystyle\int\limits_{-3}^{3,5} (x^3 + 4x + 1)dx = (\dfrac{x^4}{4} + 2x^2 + x)\big|_{-3}^{3,5} = \Big(\dfrac{(3,5)^4}{4} - \dfrac{(-3)^4}{4} \Big) + \\ + \Big( 2*(3,5)^2 - 2 * (-3)^{2} \Big) + (3,5 - (-3)) = \dfrac{150,0625 - 81}{4} + 2*(12, 25 - 9) + 6,5 = \\ = 17,265625 + 6,5 + 6,5 = 30, 265625−3∫3,5(x3+4x+1)dx=(4x4+2x2+x)∣∣−33,5=(4(3,5)4−4(−3)4)++(2∗(3,5)2−2∗(−3)2)+(3,5−(−3))=4150,0625−81+2∗(12,25−9)+6,5==17,265625+6,5+6,5=30,265625
b) ∫4xexdx=4∫xexdx\int 4xe^{x} dx = 4 \int xe^{x} dx∫4xexdx=4∫xexdx
u=xv′=exu′=1v=exu = x \\ v' = e^{x} \\ u' = 1 \\ v = e^{x}u=xv′=exu′=1v=ex
uv′=(uv)′−u′vuv' = (uv)' - u'vuv′=(uv)′−u′v
4∫xexdx=4(xex−∫(1∗ex)dx)=4(xex−ex)+c4 \int xe^{x} dx = 4(xe^x - \int (1*e^x) dx) = 4(xe^x - e^x)+c4∫xexdx=4(xex−∫(1∗ex)dx)=4(xex−ex)+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments