a,Calculate the area under the curve π¦ = π₯3 + 4π₯ + 1 from x=-3 to x=3. 5
b) Evaluate: β«4 π₯ππ₯ dx.
a)
"\\displaystyle\\int\\limits_{-3}^{3,5} (x^3 + 4x + 1)dx = (\\dfrac{x^4}{4} + 2x^2 + x)\\big|_{-3}^{3,5} = \\Big(\\dfrac{(3,5)^4}{4} - \\dfrac{(-3)^4}{4} \\Big) + \\\\\n+ \\Big( 2*(3,5)^2 - 2 * (-3)^{2} \\Big) + (3,5 - (-3)) = \\dfrac{150,0625 - 81}{4} + 2*(12, 25 - 9) + 6,5 = \\\\\n= 17,265625 + 6,5 + 6,5 = 30, 265625"
b) "\\int 4xe^{x} dx = 4 \\int xe^{x} dx"
"u = x \\\\\nv' = e^{x} \\\\\nu' = 1 \\\\\nv = e^{x}"
"uv' = (uv)' - u'v"
"4 \\int xe^{x} dx = 4(xe^x - \\int (1*e^x) dx) = 4(xe^x - e^x)+c"
Comments
Leave a comment