Question #277778

a,Calculate the area under the curve 𝑦 = 𝑥3 + 4𝑥 + 1 from x=-3 to x=3. 5



b) Evaluate: ∫4 𝑥𝑒𝑥 dx.




1
Expert's answer
2021-12-10T10:23:05-0500

a)

33,5(x3+4x+1)dx=(x44+2x2+x)33,5=((3,5)44(3)44)++(2(3,5)22(3)2)+(3,5(3))=150,0625814+2(12,259)+6,5==17,265625+6,5+6,5=30,265625\displaystyle\int\limits_{-3}^{3,5} (x^3 + 4x + 1)dx = (\dfrac{x^4}{4} + 2x^2 + x)\big|_{-3}^{3,5} = \Big(\dfrac{(3,5)^4}{4} - \dfrac{(-3)^4}{4} \Big) + \\ + \Big( 2*(3,5)^2 - 2 * (-3)^{2} \Big) + (3,5 - (-3)) = \dfrac{150,0625 - 81}{4} + 2*(12, 25 - 9) + 6,5 = \\ = 17,265625 + 6,5 + 6,5 = 30, 265625

b) 4xexdx=4xexdx\int 4xe^{x} dx = 4 \int xe^{x} dx

u=xv=exu=1v=exu = x \\ v' = e^{x} \\ u' = 1 \\ v = e^{x}

uv=(uv)uvuv' = (uv)' - u'v

4xexdx=4(xex(1ex)dx)=4(xexex)+c4 \int xe^{x} dx = 4(xe^x - \int (1*e^x) dx) = 4(xe^x - e^x)+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS