Determine the nature of the stationary value
X = t³ - 3t + ty²
"X_t=3t^2-3+y^2=0"
"X_y=2yt=0"
stationary points:
"t=0,y=0"
"y=0,t=\\pm 1"
"t=0,y=\\pm \\sqrt 3"
"D=X_{tt}X_{yy}-(X_{ty})^2"
"X_{tt}=6t,X_{yy}=2t,X_{ty}=2y"
at point "y=0,t= -1" :
"D=12>0,X_{tt}=-6<0,X_{yy}=-2<0"
local maximum
at point "y=0,t= 1" :
"D=12>0,X_{tt}=6>0,X_{yy}=2>0"
local minimum
at points "t=0,y=\\pm \\sqrt 3" :
"D=-12<0"
saddle points
at point "y=0,t= 0" :
"D=0"
"X_t" does not change sign ("X_t<0" ) near this point, so this is not local maximum, not local minimum and not saddle point
Comments
Leave a comment