Determine the nature of the stationary value
X = t³ - 3t + ty²
Xt=3t2−3+y2=0X_t=3t^2-3+y^2=0Xt=3t2−3+y2=0
Xy=2yt=0X_y=2yt=0Xy=2yt=0
stationary points:
t=0,y=0t=0,y=0t=0,y=0
y=0,t=±1y=0,t=\pm 1y=0,t=±1
t=0,y=±3t=0,y=\pm \sqrt 3t=0,y=±3
D=XttXyy−(Xty)2D=X_{tt}X_{yy}-(X_{ty})^2D=XttXyy−(Xty)2
Xtt=6t,Xyy=2t,Xty=2yX_{tt}=6t,X_{yy}=2t,X_{ty}=2yXtt=6t,Xyy=2t,Xty=2y
at point y=0,t=−1y=0,t= -1y=0,t=−1 :
D=12>0,Xtt=−6<0,Xyy=−2<0D=12>0,X_{tt}=-6<0,X_{yy}=-2<0D=12>0,Xtt=−6<0,Xyy=−2<0
local maximum
at point y=0,t=1y=0,t= 1y=0,t=1 :
D=12>0,Xtt=6>0,Xyy=2>0D=12>0,X_{tt}=6>0,X_{yy}=2>0D=12>0,Xtt=6>0,Xyy=2>0
local minimum
at points t=0,y=±3t=0,y=\pm \sqrt 3t=0,y=±3 :
D=−12<0D=-12<0D=−12<0
saddle points
at point y=0,t=0y=0,t= 0y=0,t=0 :
D=0D=0D=0
XtX_tXt does not change sign (Xt<0X_t<0Xt<0 ) near this point, so this is not local maximum, not local minimum and not saddle point
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments