Question #276691

If B(u)

 is a differentiable vector function of u

 and ||B(u)||=1

, prove that du

 is perpendicular to B



1
Expert's answer
2021-12-09T18:48:01-0500

Solution: Let B(u)B(u)  is a differentiable vector function of uu  and B(u)=1,||B(u)||=1 , let us prove that dBdu\frac{dB}{du}  is perpendicular to B.B .

Taking into account that B(u)=(B(u),B(u)),||B(u)||=\sqrt{(B(u),B(u))},

we conclude that (B(u),B(u))=B(u)2=1.(B(u),B(u))=||B(u)||^2=1.

It follows that

(dBdu,B(u))+(B(u),dBdu)=0,(\frac{dB}{du},B(u))+ (B(u),\frac{dB}{du})=0, and hence 2(dBdu,B(u))=0.2(\frac{dB}{du},B(u))=0.


Since the inner product (dBdu,B(u))(\frac{dB}{du},B(u)) is equal to 0, we conclude that dBdu\frac{dB}{du}  is perpendicular to B.B .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS