Let E:=E
x
i
^
+E
y
j
^
+E
z
k
^
and H:=H
x
i
^
+H
y
j
^
+H
z
k
^
be two vectors assumed to have continuous partial derivatives (of second order at least) with
respect to position and time. Suppose further that E
and H
satisfy the equations:
∇⋅E=0,∇⋅H=0,∇×E=−1
c
∂H
∂t
,∇×H=1
c
∂E
∂t
prove that E
and H
satisfy the equation
∇
2
E
i
=1
c
2
∂
2
E
i
∂t
2
and ∇
2
H
i
=1
c
2
∂
2
H
i
∂t
2
Here, i=x,y
or z
.
Hint: Use the fact that∇×(∇×V)=∇(∇⋅V)−∇
2
V.
"\u2207\u00d7(\u2207\u00d7E)=-\\frac{1}{c}\\frac{\\partial (\u2207\u00d7H)}{\\partial t}=-\\frac{1}{c^2}\\frac{\\partial E^2}{\\partial t^2}"
"\u2207\u00d7(\u2207\u00d7E)=\u2207(\u2207\u22c5E)\u2212\u2207^2E=\u2212\u2207^2E"
"\u2207^2E=\\frac{1}{c^2}\\frac{\\partial E^2}{\\partial t^2}"
"\u2207^2E_i=\\frac{1}{c^2}\\frac{\\partial E_i^2}{\\partial t^2}"
"\u2207\u00d7(\u2207\u00d7H)=\\frac{1}{c}\\frac{\\partial (\u2207\u00d7E)}{\\partial t}=-\\frac{1}{c^2}\\frac{\\partial H^2}{\\partial t^2}"
"\u2207\u00d7(\u2207\u00d7H)=\u2207(\u2207\u22c5H)\u2212\u2207^2H=\u2212\u2207^2H"
"\u2207^2H=\\frac{1}{c^2}\\frac{\\partial H^2}{\\partial t^2}"
"\u2207^2H_i=\\frac{1}{c^2}\\frac{\\partial H_i^2}{\\partial t^2}"
Comments
Leave a comment