Answer to Question #276690 in Calculus for Nawrin Dewan

Question #276690

Let E:=E

x

i

^

+E

y

j

^

+E

z

k

^

 and H:=H

x

i

^

+H

y

j

^

+H

z

k

^

 be two vectors assumed to have continuous partial derivatives (of second order at least) with

respect to position and time. Suppose further that E

 and H

 satisfy the equations:


∇⋅E=0,∇⋅H=0,∇×E=−1

c


H

∂t


,∇×H=1

c


E

∂t


prove that E

 and H

 satisfy the equation


2

E

i

=1

c

2


2

E

i

∂t

2


 and ∇

2

H

i

=1

c

2


2

H

i

∂t

2


Here, i=x,y

 or z

.

Hint: Use the fact that∇×(∇×V)=∇(∇⋅V)−∇

2

V.





1
Expert's answer
2021-12-09T15:33:51-0500

"\u2207\u00d7(\u2207\u00d7E)=-\\frac{1}{c}\\frac{\\partial (\u2207\u00d7H)}{\\partial t}=-\\frac{1}{c^2}\\frac{\\partial E^2}{\\partial t^2}"


"\u2207\u00d7(\u2207\u00d7E)=\u2207(\u2207\u22c5E)\u2212\u2207^2E=\u2212\u2207^2E"


"\u2207^2E=\\frac{1}{c^2}\\frac{\\partial E^2}{\\partial t^2}"


"\u2207^2E_i=\\frac{1}{c^2}\\frac{\\partial E_i^2}{\\partial t^2}"



"\u2207\u00d7(\u2207\u00d7H)=\\frac{1}{c}\\frac{\\partial (\u2207\u00d7E)}{\\partial t}=-\\frac{1}{c^2}\\frac{\\partial H^2}{\\partial t^2}"


"\u2207\u00d7(\u2207\u00d7H)=\u2207(\u2207\u22c5H)\u2212\u2207^2H=\u2212\u2207^2H"


"\u2207^2H=\\frac{1}{c^2}\\frac{\\partial H^2}{\\partial t^2}"


"\u2207^2H_i=\\frac{1}{c^2}\\frac{\\partial H_i^2}{\\partial t^2}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog