Question #276507

1.    Also find the equation


of tangent and normal of the ellipse


π‘₯2

4


𝑦2

+

16


=1 at the point (-1,3).


1
Expert's answer
2021-12-09T03:09:53-0500

Let us find the equation of tangent and normal of the ellipse x24+𝑦216=1\frac{x^2}4+\frac{𝑦^2}{16}=1 at the point (βˆ’1,3).(-1,3).

Let us differentiate both parts: x2+y8yβ€²=0.\frac{x}2+\frac{y}{8}y'=0. Then yβ€²=βˆ’4xy,y'=-\frac{4x}{y}, and hence yβ€²(βˆ’1)=βˆ’4(βˆ’1)3=43.y'(-1)=-\frac{4(-1)}{3}=\frac{4}{3}.

Therefore, the equation of the tangent of the ellipse x24+𝑦216=1\frac{x^2}4+\frac{𝑦^2}{16}=1 at the point (βˆ’1,3)(-1,3)

is y=3+43(x+1)y=3+\frac{4}{3}(x+1) or y=43x+133.y=\frac{4}{3}x+\frac{13}{3}. The equation of the normal of the ellipse x24+𝑦216=1\frac{x^2}4+\frac{𝑦^2}{16}=1 at the point (βˆ’1,3)(-1,3) is y=3βˆ’34(x+1)y=3-\frac{3}{4}(x+1) or y=βˆ’34x+94.y=-\frac{3}{4}x+\frac{9}4.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS