Question #276486

A spring is such that it would be stretched 15.36 in by a 40 lb weight. Let the weight be attached



to a spring and pulled down 6.5 in below the equilibrium point. If the weight is started with an



upward velocity of 7 flt/sec, describe the motion. No damping force but an impressed force of



F(t) = 10lb is present.

1
Expert's answer
2021-12-15T09:09:38-0500

in equilibrium

kδ=mg    k=mggk\delta=mg\\\implies k=\frac{mg}{g}


k=386.088515.36k=1005.4388lb/ink=\frac{386.0885}{15.36}\\k=1005.4388lb/in


Equation of motion regarding given system

md2y(t)dt2+ky(t)=f(t)m\frac{d^2y(t)}{dt^2}+ky(t)=f(t)


D2+kmyt=f(t)mD^2+\frac{k}{m}y_t=\frac{f(t)}{m}


D2+w2y(t)=sin5t0|D^2+w^2|y(t)=\frac{sin5t}{0}


D2+w2=0D=±wD^2+w^2=0\\D=±w


w=kmw=\sqrt{\frac{k}{m}}


w=10005.438840w=\sqrt{\frac{10005.4388}{40}}



D=±5iD=±5i


solution

y(t)=Asin(5.0136θ)+Bcos(5.0136θ)y(t)=Asin(5.0136\theta)+Bcos(5.0136\theta)


yp(t)=140(D2+w2)sin5θy_p(t)=\frac{1}{40(D^2+w^2)}sin5\theta


yp(t)=sin5θ(40×0.13597)=0.1839sin(5t)y_p(t)=\frac{sin5\theta}{(40\times0.13597)}\\=0.1839sin(5t)


y(t)=yp(t)+yp(t)=Asin(5.0136θ)+Bcos(5.0136θ)+0.1839sin(5t)y(t)=y_p(t)+y_p(t)=Asin(5.0136\theta)+Bcos(5.0136\theta)+0.1839sin(5t)


y(0)=5=0+Bx+0    B=5iny(0)=5=0+Bx+0\\\implies B=5in


y(t)=5.0136Asin(5.0136θ)5.0136Bcos(5.0136θ)+0.1839×5sin(5t)y'(t)=5.0136Asin(5.0136\theta)-5.0136Bcos(5.0136\theta)+0.1839\times 5sin(5t)


y(0)=5.0136A+0.9195=48y'(0)=5.0136A+0.9195=48


5.0136A=480.91955.0136A=48-0.9195

A=9.39inA=9.39in


y(t)=9.398sin(5.0136θ)+5cos(5.0136θ)+0.1839sin(5t)y(t)=9.398sin(5.0136\theta)+5cos(5.0136\theta)+0.1839sin(5t)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS