Find by double integration the area of the region in π₯π¦ plane bounded by the curves π¦ = π₯
2 and
π¦ = 4π₯ β π₯
2
.
"x^2=4-x^2"
"x_1=-\\sqrt{2}, x_2=\\sqrt{2}"
"A=\\displaystyle\\int_{-\\sqrt{2}}^{\\sqrt{2}}\\displaystyle\\int_{x^2}^{4-x^2}dydx"
"=\\displaystyle\\int_{-\\sqrt{2}}^{\\sqrt{2}}[y]\\begin{matrix}\n 4-x^2 \\\\\n x^2\n\\end{matrix}dx"
"=\\displaystyle\\int_{-\\sqrt{2}}^{\\sqrt{2}}(4-2x^2)dx"
"=[4x-\\dfrac{2x^3}{3}]\\begin{matrix}\n \\sqrt{2} \\\\\n - \\sqrt{2}\n\\end{matrix}"
"=4 \\sqrt{2}-\\dfrac{4\\sqrt{2}}{3}+4\\sqrt{2}-\\dfrac{4\\sqrt{2}}{3}"
"=\\dfrac{16\\sqrt{2}}{3} ({units}^2)"
Comments
Leave a comment