Question #276279

Show that the curve with parametric equations


x = sin t and y = sin(t + sin t) for 0 ≤ t ≤ 2π


1
Expert's answer
2021-12-15T17:23:50-0500
xt=cost,yt=cos(t+sint)(1+cost)x_t'=\cos t, y'_t=\cos(t+\sin t)(1+\cos t)yx=ytxt=cos(t+sint)(1+cost)costy_x'=\dfrac{y_t'}{x_t'}=\dfrac{\cos(t+\sin t)(1+\cos t)}{\cos t}

At the origin we have: x=0x=0 and y=0.y=0.



x=0=>sint=0=>t=πn,nZx=0=>\sin t=0=>t=\pi n, n\in \Z

For 0t2π0\leq t \leq 2\pi we have t1=0,t2=π,t3=2π.t_1=0, t_2=\pi , t_3=2\pi.

Check for yy



t1=0,y(0)=sin(0+sin(0))=0,Truet_1=0, y(0)=\sin (0+\sin(0)) =0, Truet2=π,y(π)=sin(π+sin(π))=0,Truet_2=\pi, y(\pi)=\sin (\pi+\sin(\pi)) =0, Truet3=2π,y(2π)=sin(2π+sin(2π))=0,Truet_3=2\pi, y(2\pi)=\sin (2\pi+\sin(2\pi)) =0, True

So yy is also satisfied. Put these values of tt into yxy_x' to find the gradient of the tangent line:



t1=0,t_1=0,yxt=0=cos(0+sin(0))(1+cos(0))cos(0)=2y_x'|_{t=0}=\dfrac{\cos(0+\sin (0))(1+\cos (0))}{\cos (0)}=2slope1=m1=2slope_1=m_1=2

The equation of the tangent line is



y0=2(x0)y-0=2(x-0)y=2xy=2xt2=π,t_2=\pi,yxt=π=cos(π+sin(π))(1+cos(π))cos(π)=0y_x'|_{t=\pi}=\dfrac{\cos(\pi+\sin (\pi))(1+\cos (\pi))}{\cos (\pi)}=0slope2=m2=0slope_2=m_2=0

The equation of the tangent line is



y0=0(x0)y-0=0(x-0)y=0y=0t3=2π,t_3=2\pi,yxt=2π=cos(2π+sin(2π))(1+cos(2π))cos(2π)=0y_x'|_{t=2\pi}=\dfrac{\cos(2\pi+\sin (2\pi))(1+\cos (2\pi))}{\cos (2\pi)}=0slope3=m3=2=m1slope_3=m_3=2=m_1

The equation of the tangent line is



y=2xy=2x

Therefore our two tangents at the origin will be:



y1=2x,y2=0y_1=2x, y_2=0

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS