Find the area of the paraboloid x2 + y2 = z inside the cylinder x2 + y2 = 9.
"z_x = 2x"
"z_y=2y"
The surface area over the region R defined by "x^2+y^2 = 9=3^2" is
"S = \\int \\int_R \\sqrt{(z_x)^2+(z_y)^2+1}dxdy"
= "\\int \\int_R \\sqrt{4x^2+4y^2+1}dxdy"
Then to polar coordinates
"S = \\int_{0}^{2\\pi} \\int_0^3(4r^2+1)^{1\/2}rdrd\\theta"
"= \\dfrac{1}{12} \\int_{0}^{2\\pi} (4r^2+1)^{3\/2}|_0^3d\\theta"
"= \\dfrac{37\\sqrt{37} -1}{12} \\int_0^{2\\pi} d\\theta"
"=\\dfrac{37\\sqrt{37} -1}{12} 2\\pi"
"= \\pi \\dfrac{37\\sqrt{37}-1}{6}"
Comments
Leave a comment