Two gardens. A fence of length 100 ft is to be used to enclose two
gardens. One garden is to have a circular shape, and the other to be
square.
Determine how the fence should be cut so that the sum of the areas
inside both gardens is as large as possible.
Let side of the square garden is a and radius of the circular garden is r.
We have to maximize "a^{2}+\\pi r^{2}"
"\\begin{aligned}\n\n&\\text { Subject to, } 4 a+2 \\pi r=100 \\\\\n\n&\\text { i.e., } 2 a+\\pi r=50\n\n\\end{aligned}"
The Lagrange function "L=\\left(a^{2}+\\pi r^{2}\\right)+\\lambda(2 a+\\pi r-50)."
"\\therefore \\begin{aligned}\n\n\\frac{\\partial L}{\\partial a} & \\equiv 2 a+2 \\lambda=0 \\quad \\Rightarrow \\quad \\lambda=-a \\\\\n\n\\frac{\\partial L}{\\partial r} & \\equiv 2 \\pi r+\\lambda \\pi=0 \\quad \\Rightarrow \\lambda=-2 r .\n\n\\end{aligned}"
"\\begin{aligned}\n\n\\therefore & 2(-\\lambda)+\\pi\\left(-\\frac{\\lambda}{2}\\right)=50 \\\\\n\n& \\Rightarrow \\lambda\\left(-2-\\frac{\\pi}{2}\\right)=50 \\\\\n\n& \\Rightarrow \\lambda=\\frac{-100}{4+\\pi} \\\\\n\n\\therefore \\quad & a=\\frac{100}{4+\\pi} \\\\\n\n\\text { and, } & r=\\frac{50}{4+\\pi}\n\n\\end{aligned}"
"\\therefore" The required fence for square "=\\frac{400}{4+\\pi} \\mathrm{ft}" and for circular garden "=\\frac{100 \\pi}{4+\\pi} f_{t}."
Comments
Leave a comment