Question #276228

1. Consider the function y = x2 + 3x + 5. 2x−3

(a) Determine the domain of the function.

(b) Determine the range of the function.

(c) Determine the intercepts of the function.

(d) Find the asymptotes if they exist.

(e) Find the turning points (if they exist) and determine the type of turning points they are.

(f) Manually sketch the graph of the function.


1
Expert's answer
2021-12-08T04:38:16-0500

1.


y=x2+3x+52x3y=\dfrac{x^2+3x+5}{2x-3}

2x30=>x322x-3\not=0=>x\not=\dfrac{3}{2}


x=0:y=(0)2+3(0)+52(0)3=53x=0: y=\dfrac{(0)^2+3(0)+5}{2(0)-3}=-\dfrac{5}{3}


y=0:x2+3x+52x3=0y=0:\dfrac{x^2+3x+5}{2x-3}=0

x2+3x+5=0,x32x^2+3x+5=0, x\not=\dfrac{3}{2}

D=920=11<0,D=9-20=-11<0,

No solution.


limx(3/2)x2+3x+52x3=\lim\limits_{x\to(3/2)^-}\dfrac{x^2+3x+5}{2x-3}=-\infin

limx(3/2)+x2+3x+52x3=\lim\limits_{x\to(3/2)^+}\dfrac{x^2+3x+5}{2x-3}=\infin

Vertical asymptote: x=3/2x=3/2


limxx2+3x+52x3=\lim\limits_{x\to-\infin}\dfrac{x^2+3x+5}{2x-3}=-\infin

limxx2+3x+52x3=\lim\limits_{x\to\infin}\dfrac{x^2+3x+5}{2x-3}=\infin

There is no horizontal asymptote.


x2+3x+52x3=x2(3/2)x+(9/2)x27/4+47/42x3\dfrac{x^2+3x+5}{2x-3}=\dfrac{x^2-(3/2)x+(9/2)x-27/4+47/4}{2x-3}

=12x+94+47/42x3=\dfrac{1}{2}x+\dfrac{9}{4}+\dfrac{47/4}{2x-3}

Slant (oblique) asymptote: y=12x+94y=\dfrac{1}{2}x+\dfrac{9}{4}


y=(x2+3x+52x3)=y'=(\dfrac{x^2+3x+5}{2x-3})'=

=(2x+3)(2x3)2(x2+3x+5)(2x3)2=\dfrac{(2x+3)(2x-3)-2(x^2+3x+5)}{(2x-3)^2}

=4x292x26x10(2x3)2=\dfrac{4x^2-9-2x^2-6x-10}{(2x-3)^2}

=2x26x19(2x3)2=\dfrac{2x^2-6x-19}{(2x-3)^2}

Find the critical number(s)


y=0=>2x26x19(2x3)2=0y'=0=>\dfrac{2x^2-6x-19}{(2x-3)^2}=02x26x19=0,x322x^2-6x-19=0, x\not=\dfrac{3}{2}

D=(6)24(2)(19)=188>0D=(-6)^2-4(2)(-19)=188>0

x=6±1882(2)=3±472x=\dfrac{6\pm\sqrt{188}}{2(2)}=\dfrac{3\pm\sqrt{47}}{2}

Critical numbers:


3472,32,3+472\dfrac{3-\sqrt{47}}{2}, \dfrac{3}{2}, \dfrac{3+\sqrt{47}}{2}

If x<3472,y>0,yx<\dfrac{3-\sqrt{47}}{2}, y'>0, y increases.


If 3472<x<32,y<0,y\dfrac{3-\sqrt{47}}{2}<x<\dfrac{3}{2}, y'<0, y decreases.


If 32<x<3+472,y<0,y\dfrac{3}{2}<x<\dfrac{3+\sqrt{47}}{2}, y'<0, y decreases.


If x>3+472,y>0,yx>\dfrac{3+\sqrt{47}}{2}, y>0, y increases.



y(3472)=(3472)2+3(3472)+52(3472)3y(\dfrac{3-\sqrt{47}}{2})=\dfrac{(\dfrac{3-\sqrt{47}}{2})^2+3(\dfrac{3-\sqrt{47}}{2})+5}{2(\dfrac{3-\sqrt{47}}{2})-3}

=3472=3-\dfrac{\sqrt{47}}{2}


y(3+472)=(3+472)2+3(3+472)+52(3+472)3y(\dfrac{3+\sqrt{47}}{2})=\dfrac{(\dfrac{3+\sqrt{47}}{2})^2+3(\dfrac{3+\sqrt{47}}{2})+5}{2(\dfrac{3+\sqrt{47}}{2})-3}

=3+472=3+\dfrac{\sqrt{47}}{2}

The function yy has a local maximum with value of 34723-\dfrac{\sqrt{47}}{2} at x=3472.x=\dfrac{3-\sqrt{47}}{2}.

The function yy has a local minimum with value of 3+4723+\dfrac{\sqrt{47}}{2} at x=3+472.x=\dfrac{3+\sqrt{47}}{2}.

If x<32,x<\dfrac{3}{2}, the function yy increases from -\infin to 3472,3-\dfrac{\sqrt{47}}{2}, and then decreases from 34723-\dfrac{\sqrt{47}}{2} to .-\infin.

Hence y(,3472],y\in(-\infin, 3-\dfrac{\sqrt{47}}{2}], when x(,32).x\in(-\infin, \dfrac{3}{2}).

If x>32,x>\dfrac{3}{2}, the function yy decreases from \infin to 3+472,3+\dfrac{\sqrt{47}}{2}, and then increases from 3+4723+\dfrac{\sqrt{47}}{2} to .\infin.

Hence y[3+472,)y\in[3+\dfrac{\sqrt{47}}{2},\infin) when x(32,,).x\in(\dfrac{3}{2},\infin, ).


(a) Domain:

(,32)(32,).(-\infin, \dfrac{3}{2})\cup (\dfrac{3}{2}, \infin).

(b) Range:


(,3472)(3+472,).(-\infin, 3-\dfrac{\sqrt{47}}{2})\cup (3+\dfrac{\sqrt{47}}{2}, \infin).

(c) Determine the intercepts of the function.

yy - intercept: (0,53)(0, -\dfrac{5}{3})

There are no xx - intercepts.


(d)

Vertical asymptote: x=3/2x=3/2


There is no horizontal asymptote.


Slant (oblique) asymptote: y=12x+94y=\dfrac{1}{2}x+\dfrac{9}{4}


(e)

Turning point (3472,3472)(\dfrac{3-\sqrt{47}}{2}, 3-\dfrac{\sqrt{47}}{2}) is a local maximum.

Turning point (3+472,3+472)(\dfrac{3+\sqrt{47}}{2}, 3+\dfrac{\sqrt{47}}{2}) is a local minimum.


(f) Manually sketch the graph of the function.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS