1.
y=2x−3x2+3x+5 2x−3=0=>x=23
x=0:y=2(0)−3(0)2+3(0)+5=−35
y=0:2x−3x2+3x+5=0
x2+3x+5=0,x=23
D=9−20=−11<0, No solution.
x→(3/2)−lim2x−3x2+3x+5=−∞
x→(3/2)+lim2x−3x2+3x+5=∞ Vertical asymptote: x=3/2
x→−∞lim2x−3x2+3x+5=−∞
x→∞lim2x−3x2+3x+5=∞ There is no horizontal asymptote.
2x−3x2+3x+5=2x−3x2−(3/2)x+(9/2)x−27/4+47/4
=21x+49+2x−347/4
Slant (oblique) asymptote: y=21x+49
y′=(2x−3x2+3x+5)′=
=(2x−3)2(2x+3)(2x−3)−2(x2+3x+5)
=(2x−3)24x2−9−2x2−6x−10
=(2x−3)22x2−6x−19 Find the critical number(s)
y′=0=>(2x−3)22x2−6x−19=02x2−6x−19=0,x=23
D=(−6)2−4(2)(−19)=188>0
x=2(2)6±188=23±47 Critical numbers:
23−47,23,23+47 If x<23−47,y′>0,y increases.
If 23−47<x<23,y′<0,y decreases.
If 23<x<23+47,y′<0,y decreases.
If x>23+47,y>0,y increases.
y(23−47)=2(23−47)−3(23−47)2+3(23−47)+5
=3−247
y(23+47)=2(23+47)−3(23+47)2+3(23+47)+5
=3+247The function y has a local maximum with value of 3−247 at x=23−47.
The function y has a local minimum with value of 3+247 at x=23+47.
If x<23, the function y increases from −∞ to 3−247, and then decreases from 3−247 to −∞.
Hence y∈(−∞,3−247], when x∈(−∞,23).
If x>23, the function y decreases from ∞ to 3+247, and then increases from 3+247 to ∞.
Hence y∈[3+247,∞) when x∈(23,∞,).
(a) Domain:
(−∞,23)∪(23,∞).
(b) Range:
(−∞,3−247)∪(3+247,∞).
(c) Determine the intercepts of the function.
y - intercept: (0,−35)
There are no x - intercepts.
(d)
Vertical asymptote: x=3/2
There is no horizontal asymptote.
Slant (oblique) asymptote: y=21x+49
(e)
Turning point (23−47,3−247) is a local maximum.
Turning point (23+47,3+247) is a local minimum.
(f) Manually sketch the graph of the function.
Comments