1.
y = x 2 + 3 x + 5 2 x − 3 y=\dfrac{x^2+3x+5}{2x-3} y = 2 x − 3 x 2 + 3 x + 5 2 x − 3 ≠ 0 = > x ≠ 3 2 2x-3\not=0=>x\not=\dfrac{3}{2} 2 x − 3 = 0 => x = 2 3
x = 0 : y = ( 0 ) 2 + 3 ( 0 ) + 5 2 ( 0 ) − 3 = − 5 3 x=0: y=\dfrac{(0)^2+3(0)+5}{2(0)-3}=-\dfrac{5}{3} x = 0 : y = 2 ( 0 ) − 3 ( 0 ) 2 + 3 ( 0 ) + 5 = − 3 5
y = 0 : x 2 + 3 x + 5 2 x − 3 = 0 y=0:\dfrac{x^2+3x+5}{2x-3}=0 y = 0 : 2 x − 3 x 2 + 3 x + 5 = 0
x 2 + 3 x + 5 = 0 , x ≠ 3 2 x^2+3x+5=0, x\not=\dfrac{3}{2} x 2 + 3 x + 5 = 0 , x = 2 3
D = 9 − 20 = − 11 < 0 , D=9-20=-11<0, D = 9 − 20 = − 11 < 0 , No solution.
lim x → ( 3 / 2 ) − x 2 + 3 x + 5 2 x − 3 = − ∞ \lim\limits_{x\to(3/2)^-}\dfrac{x^2+3x+5}{2x-3}=-\infin x → ( 3/2 ) − lim 2 x − 3 x 2 + 3 x + 5 = − ∞
lim x → ( 3 / 2 ) + x 2 + 3 x + 5 2 x − 3 = ∞ \lim\limits_{x\to(3/2)^+}\dfrac{x^2+3x+5}{2x-3}=\infin x → ( 3/2 ) + lim 2 x − 3 x 2 + 3 x + 5 = ∞ Vertical asymptote: x = 3 / 2 x=3/2 x = 3/2
lim x → − ∞ x 2 + 3 x + 5 2 x − 3 = − ∞ \lim\limits_{x\to-\infin}\dfrac{x^2+3x+5}{2x-3}=-\infin x → − ∞ lim 2 x − 3 x 2 + 3 x + 5 = − ∞
lim x → ∞ x 2 + 3 x + 5 2 x − 3 = ∞ \lim\limits_{x\to\infin}\dfrac{x^2+3x+5}{2x-3}=\infin x → ∞ lim 2 x − 3 x 2 + 3 x + 5 = ∞ There is no horizontal asymptote.
x 2 + 3 x + 5 2 x − 3 = x 2 − ( 3 / 2 ) x + ( 9 / 2 ) x − 27 / 4 + 47 / 4 2 x − 3 \dfrac{x^2+3x+5}{2x-3}=\dfrac{x^2-(3/2)x+(9/2)x-27/4+47/4}{2x-3} 2 x − 3 x 2 + 3 x + 5 = 2 x − 3 x 2 − ( 3/2 ) x + ( 9/2 ) x − 27/4 + 47/4
= 1 2 x + 9 4 + 47 / 4 2 x − 3 =\dfrac{1}{2}x+\dfrac{9}{4}+\dfrac{47/4}{2x-3} = 2 1 x + 4 9 + 2 x − 3 47/4
Slant (oblique) asymptote: y = 1 2 x + 9 4 y=\dfrac{1}{2}x+\dfrac{9}{4} y = 2 1 x + 4 9
y ′ = ( x 2 + 3 x + 5 2 x − 3 ) ′ = y'=(\dfrac{x^2+3x+5}{2x-3})'= y ′ = ( 2 x − 3 x 2 + 3 x + 5 ) ′ =
= ( 2 x + 3 ) ( 2 x − 3 ) − 2 ( x 2 + 3 x + 5 ) ( 2 x − 3 ) 2 =\dfrac{(2x+3)(2x-3)-2(x^2+3x+5)}{(2x-3)^2} = ( 2 x − 3 ) 2 ( 2 x + 3 ) ( 2 x − 3 ) − 2 ( x 2 + 3 x + 5 )
= 4 x 2 − 9 − 2 x 2 − 6 x − 10 ( 2 x − 3 ) 2 =\dfrac{4x^2-9-2x^2-6x-10}{(2x-3)^2} = ( 2 x − 3 ) 2 4 x 2 − 9 − 2 x 2 − 6 x − 10
= 2 x 2 − 6 x − 19 ( 2 x − 3 ) 2 =\dfrac{2x^2-6x-19}{(2x-3)^2} = ( 2 x − 3 ) 2 2 x 2 − 6 x − 19 Find the critical number(s)
y ′ = 0 = > 2 x 2 − 6 x − 19 ( 2 x − 3 ) 2 = 0 y'=0=>\dfrac{2x^2-6x-19}{(2x-3)^2}=0 y ′ = 0 => ( 2 x − 3 ) 2 2 x 2 − 6 x − 19 = 0 2 x 2 − 6 x − 19 = 0 , x ≠ 3 2 2x^2-6x-19=0, x\not=\dfrac{3}{2} 2 x 2 − 6 x − 19 = 0 , x = 2 3
D = ( − 6 ) 2 − 4 ( 2 ) ( − 19 ) = 188 > 0 D=(-6)^2-4(2)(-19)=188>0 D = ( − 6 ) 2 − 4 ( 2 ) ( − 19 ) = 188 > 0
x = 6 ± 188 2 ( 2 ) = 3 ± 47 2 x=\dfrac{6\pm\sqrt{188}}{2(2)}=\dfrac{3\pm\sqrt{47}}{2} x = 2 ( 2 ) 6 ± 188 = 2 3 ± 47 Critical numbers:
3 − 47 2 , 3 2 , 3 + 47 2 \dfrac{3-\sqrt{47}}{2}, \dfrac{3}{2}, \dfrac{3+\sqrt{47}}{2} 2 3 − 47 , 2 3 , 2 3 + 47 If x < 3 − 47 2 , y ′ > 0 , y x<\dfrac{3-\sqrt{47}}{2}, y'>0, y x < 2 3 − 47 , y ′ > 0 , y increases.
If 3 − 47 2 < x < 3 2 , y ′ < 0 , y \dfrac{3-\sqrt{47}}{2}<x<\dfrac{3}{2}, y'<0, y 2 3 − 47 < x < 2 3 , y ′ < 0 , y decreases.
If 3 2 < x < 3 + 47 2 , y ′ < 0 , y \dfrac{3}{2}<x<\dfrac{3+\sqrt{47}}{2}, y'<0, y 2 3 < x < 2 3 + 47 , y ′ < 0 , y decreases.
If x > 3 + 47 2 , y > 0 , y x>\dfrac{3+\sqrt{47}}{2}, y>0, y x > 2 3 + 47 , y > 0 , y increases.
y ( 3 − 47 2 ) = ( 3 − 47 2 ) 2 + 3 ( 3 − 47 2 ) + 5 2 ( 3 − 47 2 ) − 3 y(\dfrac{3-\sqrt{47}}{2})=\dfrac{(\dfrac{3-\sqrt{47}}{2})^2+3(\dfrac{3-\sqrt{47}}{2})+5}{2(\dfrac{3-\sqrt{47}}{2})-3} y ( 2 3 − 47 ) = 2 ( 2 3 − 47 ) − 3 ( 2 3 − 47 ) 2 + 3 ( 2 3 − 47 ) + 5
= 3 − 47 2 =3-\dfrac{\sqrt{47}}{2} = 3 − 2 47
y ( 3 + 47 2 ) = ( 3 + 47 2 ) 2 + 3 ( 3 + 47 2 ) + 5 2 ( 3 + 47 2 ) − 3 y(\dfrac{3+\sqrt{47}}{2})=\dfrac{(\dfrac{3+\sqrt{47}}{2})^2+3(\dfrac{3+\sqrt{47}}{2})+5}{2(\dfrac{3+\sqrt{47}}{2})-3} y ( 2 3 + 47 ) = 2 ( 2 3 + 47 ) − 3 ( 2 3 + 47 ) 2 + 3 ( 2 3 + 47 ) + 5
= 3 + 47 2 =3+\dfrac{\sqrt{47}}{2} = 3 + 2 47 The function y y y has a local maximum with value of 3 − 47 2 3-\dfrac{\sqrt{47}}{2} 3 − 2 47 at x = 3 − 47 2 . x=\dfrac{3-\sqrt{47}}{2}. x = 2 3 − 47 .
The function y y y has a local minimum with value of 3 + 47 2 3+\dfrac{\sqrt{47}}{2} 3 + 2 47 at x = 3 + 47 2 . x=\dfrac{3+\sqrt{47}}{2}. x = 2 3 + 47 .
If x < 3 2 , x<\dfrac{3}{2}, x < 2 3 , the function y y y increases from − ∞ -\infin − ∞ to 3 − 47 2 , 3-\dfrac{\sqrt{47}}{2}, 3 − 2 47 , and then decreases from 3 − 47 2 3-\dfrac{\sqrt{47}}{2} 3 − 2 47 to − ∞ . -\infin. − ∞.
Hence y ∈ ( − ∞ , 3 − 47 2 ] , y\in(-\infin, 3-\dfrac{\sqrt{47}}{2}], y ∈ ( − ∞ , 3 − 2 47 ] , when x ∈ ( − ∞ , 3 2 ) . x\in(-\infin, \dfrac{3}{2}). x ∈ ( − ∞ , 2 3 ) .
If x > 3 2 , x>\dfrac{3}{2}, x > 2 3 , the function y y y decreases from ∞ \infin ∞ to 3 + 47 2 , 3+\dfrac{\sqrt{47}}{2}, 3 + 2 47 , and then increases from 3 + 47 2 3+\dfrac{\sqrt{47}}{2} 3 + 2 47 to ∞ . \infin. ∞.
Hence y ∈ [ 3 + 47 2 , ∞ ) y\in[3+\dfrac{\sqrt{47}}{2},\infin) y ∈ [ 3 + 2 47 , ∞ ) when x ∈ ( 3 2 , ∞ , ) . x\in(\dfrac{3}{2},\infin, ). x ∈ ( 2 3 , ∞ , ) .
(a) Domain:
( − ∞ , 3 2 ) ∪ ( 3 2 , ∞ ) . (-\infin, \dfrac{3}{2})\cup (\dfrac{3}{2}, \infin). ( − ∞ , 2 3 ) ∪ ( 2 3 , ∞ ) .
(b) Range:
( − ∞ , 3 − 47 2 ) ∪ ( 3 + 47 2 , ∞ ) . (-\infin, 3-\dfrac{\sqrt{47}}{2})\cup (3+\dfrac{\sqrt{47}}{2}, \infin). ( − ∞ , 3 − 2 47 ) ∪ ( 3 + 2 47 , ∞ ) .
(c) Determine the intercepts of the function.
y y y - intercept: ( 0 , − 5 3 ) (0, -\dfrac{5}{3}) ( 0 , − 3 5 )
There are no x x x - intercepts.
(d)
Vertical asymptote: x = 3 / 2 x=3/2 x = 3/2
There is no horizontal asymptote.
Slant (oblique) asymptote: y = 1 2 x + 9 4 y=\dfrac{1}{2}x+\dfrac{9}{4} y = 2 1 x + 4 9
(e)
Turning point ( 3 − 47 2 , 3 − 47 2 ) (\dfrac{3-\sqrt{47}}{2}, 3-\dfrac{\sqrt{47}}{2}) ( 2 3 − 47 , 3 − 2 47 ) is a local maximum.
Turning point ( 3 + 47 2 , 3 + 47 2 ) (\dfrac{3+\sqrt{47}}{2}, 3+\dfrac{\sqrt{47}}{2}) ( 2 3 + 47 , 3 + 2 47 ) is a local minimum.
(f) Manually sketch the graph of the function.
Comments