1. Evaluate "\\intop"x2(1 + 2x3)3dx.
2. Evaluate "\\intop"xe7x dx.
3. Find the volume of the solid of revolution when the curve y = 1 + x2 is revolved around the x-axis on [−2, 2].
(1) "I=\\int x^{2}\\left(1+2 x^{3}\\right)^{3} d x"
By substitution method, let "u=1+2 x^{3}"
Such that "d u=6 x^{2} d x"
"\\begin{aligned}\n\n&I=\\int x^{2}\\left(1+2 x^{3}\\right)^{3} d x=I=\\int x^{2} u^{3} \\frac{d u}{6 x^{2}} \\\\\n\n&I=\\frac{1}{4} \\int u^{3} d u=\\frac{u^{4}}{24}+C \\\\\n\n&I=\\frac{\\left(1+2 x^{3}\\right)^{4}}{24}+C\n\n\\end{aligned}"
(2) "I=\\int x e^{7 x} d x"
Using integration by part
"\\begin{aligned}\n\n&u=x \\quad, \\quad d v=e^{7 x} d x \\\\\n\n&d u=1, \\quad v=\\frac{e^{7 x}}{7} \\\\\n\n&\\int u d v=u v-\\int v d u \\\\\n\n&I=\\frac{x e^{7 x}}{7}-\\frac{1}{7} \\int e^{7 x} d x\n\n\\end{aligned}"
"I=\\frac{x e^{7 x}}{7}-\\frac{e^{7 x}}{49}+C"
(3) "y=1+x^{2}"
Using method of disk
"\\begin{aligned}\n\n&V=\\int_{-2}^{2} \\pi y^{2} d x=\\int_{-2}^{2} \\pi\\left(1+x^{2}\\right)^{2} d x \\\\\n\n&V=\\int_{-2}^{2} \\pi\\left(1+2 x^{2}+x^{4}\\right) d x \\\\\n\n&V=\\frac{412 \\pi}{15}\n\n\\end{aligned}"
Comments
Leave a comment