Answer to Question #276217 in Calculus for Ella

Question #276217

1. Evaluate \intopx2(1 + 2x3)3dx.


2. Evaluate \intopxe7x dx.

3. Find the volume of the solid of revolution when the curve y = 1 + x2 is revolved around the x-axis on [−2, 2].


1
Expert's answer
2021-12-17T12:33:02-0500

(1) I=x2(1+2x3)3dxI=\int x^{2}\left(1+2 x^{3}\right)^{3} d x

By substitution method, let u=1+2x3u=1+2 x^{3}

Such that du=6x2dxd u=6 x^{2} d x

I=x2(1+2x3)3dx=I=x2u3du6x2I=14u3du=u424+CI=(1+2x3)424+C\begin{aligned} &I=\int x^{2}\left(1+2 x^{3}\right)^{3} d x=I=\int x^{2} u^{3} \frac{d u}{6 x^{2}} \\ &I=\frac{1}{4} \int u^{3} d u=\frac{u^{4}}{24}+C \\ &I=\frac{\left(1+2 x^{3}\right)^{4}}{24}+C \end{aligned}

(2) I=xe7xdxI=\int x e^{7 x} d x

Using integration by part

u=x,dv=e7xdxdu=1,v=e7x7udv=uvvduI=xe7x717e7xdx\begin{aligned} &u=x \quad, \quad d v=e^{7 x} d x \\ &d u=1, \quad v=\frac{e^{7 x}}{7} \\ &\int u d v=u v-\int v d u \\ &I=\frac{x e^{7 x}}{7}-\frac{1}{7} \int e^{7 x} d x \end{aligned}


I=xe7x7e7x49+CI=\frac{x e^{7 x}}{7}-\frac{e^{7 x}}{49}+C

(3) y=1+x2y=1+x^{2}

Using method of disk

V=22πy2dx=22π(1+x2)2dxV=22π(1+2x2+x4)dxV=412π15\begin{aligned} &V=\int_{-2}^{2} \pi y^{2} d x=\int_{-2}^{2} \pi\left(1+x^{2}\right)^{2} d x \\ &V=\int_{-2}^{2} \pi\left(1+2 x^{2}+x^{4}\right) d x \\ &V=\frac{412 \pi}{15} \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment