(1) I=∫x2(1+2x3)3dx
By substitution method, let u=1+2x3
Such that du=6x2dx
I=∫x2(1+2x3)3dx=I=∫x2u36x2duI=41∫u3du=24u4+CI=24(1+2x3)4+C
(2) I=∫xe7xdx
Using integration by part
u=x,dv=e7xdxdu=1,v=7e7x∫udv=uv−∫vduI=7xe7x−71∫e7xdx
I=7xe7x−49e7x+C
(3) y=1+x2
Using method of disk
V=∫−22πy2dx=∫−22π(1+x2)2dxV=∫−22π(1+2x2+x4)dxV=15412π
Comments
Leave a comment