Find the average value of π(π₯, π¦) = π₯
2π¦ over the region π which is a rectangle with vertices
(β1, 0), (β1, 5), (1, 5), (1, 0).
The area of the rectangle is,
"A(R)=2\\cdot5=10"
The average value of function over the rectangleΒ "R"Β is evaluated as,
"f_{ave}=\\frac{1}{A(R)}\\iint_{R}f(x,y)dA =\\frac{1}{10}\\int_{-1}^{1}\\int_{0}^{5}x^2ydydx="
"=\\frac{1}{20}\\int_{-1}^{1}x^2y^2|^5_0dx=\\frac{25}{20}x^3\/3|^1_{-1}=\\frac{2\\cdot25}{3\\cdot20}=\\frac{5}{6}"
Comments
Leave a comment