∬(𝑦 + 𝑥𝑦
−2)𝑑𝐴
𝑅
, 𝑅 = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 2, 1 ≤ 𝑦 ≤ 2}
∬(𝑦 + 𝑥𝑦 −2)𝑑𝐴 = ∫12∫02(y+xy−2)dxdy\int_{1}^{2}\int_{0}^{2}(y+xy-2)dxdy\\∫12∫02(y+xy−2)dxdy
=∫12[∫02(y+xy−2)dy]dx=∫12[y2/2+xy2/2−2y]02dx=∫12[2+2x−4−0]dx=∫12(2x−2)dx=[2x2/2−2x]12=[x2−2x]12=4−4+1−2=−1=\int_{1}^{2}[\int_{0}^{2}(y+xy-2)dy]dx\\ =\int_{1}^{2}[y^2/2+xy^2/2-2y]_{0}^{2}dx\\ =\int_{1}^{2} [2+2x-4-0]dx\\ =\int_{1}^{2}(2x-2)dx\\ =[2x^2/2-2x]_{1}^{2}\\ =[x^2-2x]_{1}^{2}\\ =4-4+1-2\\ =-1=∫12[∫02(y+xy−2)dy]dx=∫12[y2/2+xy2/2−2y]02dx=∫12[2+2x−4−0]dx=∫12(2x−2)dx=[2x2/2−2x]12=[x2−2x]12=4−4+1−2=−1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments