Question #276505

1.    Find the derivatives of the following functions with respect to x.

π‘₯3 + 𝑦3 = 3   

𝑦 = (sin π‘₯)π‘‘π‘Žπ‘›π‘₯




1
Expert's answer
2021-12-08T14:07:57-0500

π‘₯3+𝑦3=3π‘₯^3 + 𝑦^3 = 3

y=(3βˆ’x3)1/3y=(3-x^3)^{1/3}

3x2+3y2yβ€²=03x^2+3y^2y'=0


yβ€²=βˆ’x2y2=βˆ’x2(3βˆ’x3)2/3y'=-\frac{x^2}{y^2}=-\frac{x^2}{(3-x^3)^{2/3}}



𝑦=(sinπ‘₯)π‘‘π‘Žπ‘›π‘₯𝑦 = (sin π‘₯)^{π‘‘π‘Žπ‘›π‘₯}

lny=tanxln(sinx)lny=tanxln(sinx)


(lny)β€²=yβ€²y=ln(sinx)cos2x+tanxcosxsinx=ln(sinx)cos2x+1(lny)'=\frac{y'}{y}=\frac{ln(sinx)}{cos^2x}+\frac{tanxcosx}{sinx}=\frac{ln(sinx)}{cos^2x}+1


yβ€²=(ln(sinx)cos2x+1)y=(ln(sinx)cos2x+1)(sinπ‘₯)π‘‘π‘Žπ‘›π‘₯y'=(\frac{ln(sinx)}{cos^2x}+1)y=(\frac{ln(sinx)}{cos^2x}+1)(sin π‘₯)^{π‘‘π‘Žπ‘›π‘₯}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS