Question #276489

A spring is such that a 2 lb weight stretches it by 6 in. An impressed force of F(t) = ¼ sin 8t is



acting on the spring. If the 2-lb weight is released from a point 3 in below the equilibrium point,



describe the motion.

1
Expert's answer
2021-12-09T12:12:14-0500

my+ky=F(t)my''+ky=F(t)

we have:

mg=2mg=2

m=2/g=2/32=1/16m=2/g=2/32=1/16 lb

k=mg/l=2/0.5=4k=mg/l=2/0.5=4


then:

y/16+4y=sin8t/4,y(0)=1/4,y(0)=0y''/16+4y=sin8t/4,y(0)=1/4,y'(0)=0


r2/16+4=0r^2/16+4=0

r=±8ir=\pm8i

yh=c1cos8t+c2sin8ty_h=c_1cos8t+c_2sin8t


yp=Atcos8t+Btsin8ty_p=Atcos8t+Btsin8t


yp=Acos8t8Atsin8t+Bsin8t+8Btcos8t=y'_p=Acos8t-8Atsin8t+Bsin8t+8Btcos8t=

=(A+8Bt)cos8t+(B8At)sin8t=(A+8Bt)cos8t+(B-8At)sin8t


yp=8Btcos8t8(A+8Bt)sin8t8Asin8t+8(B8At)cos8ty''_p=8Btcos8t-8(A+8Bt)sin8t-8Asin8t+8(B-8At)cos8t


8Btcos8t8(A+8Bt)sin8t8Asin8t+8(B8At)cos8t+8Btcos8t-8(A+8Bt)sin8t-8Asin8t+8(B-8At)cos8t+

+64(Atcos8t+Btsin8t)=4sin8t+64(Atcos8t+Btsin8t)=4sin8t


8B64A+64A=0    B=08B-64A+64A=0\implies B=0

8A8A=4-8A-8A=4

A=1/4A=-1/4

yp=tcos8t/4y_p=-tcos8t/4


y=yh+yp=c1cos8t+c2sin8ttcos8t/4y=y_h+y_p=c_1cos8t+c_2sin8t-tcos8t/4


y(0)=c1=1/4y(0)=c_1=1/4


y=2sin8t+8c2cos8tcos8t/4+2tsin8ty'=-2sin8t+8c_2cos8t-cos8t/4+2tsin8t


y(0)=8c21/4=0y'(0)=8c_2-1/4=0

c2=1/32c_2=1/32


y(t)=cos8t/4+sin8t/32tcos8t/4y(t)=cos8t/4+sin8t/32-tcos8t/4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS