my′′+ky=F(t)
we have:
mg=2
m=2/g=2/32=1/16 lb
k=mg/l=2/0.5=4
then:
y′′/16+4y=sin8t/4,y(0)=1/4,y′(0)=0
r2/16+4=0
r=±8i
yh=c1cos8t+c2sin8t
yp=Atcos8t+Btsin8t
yp′=Acos8t−8Atsin8t+Bsin8t+8Btcos8t=
=(A+8Bt)cos8t+(B−8At)sin8t
yp′′=8Btcos8t−8(A+8Bt)sin8t−8Asin8t+8(B−8At)cos8t
8Btcos8t−8(A+8Bt)sin8t−8Asin8t+8(B−8At)cos8t+
+64(Atcos8t+Btsin8t)=4sin8t
8B−64A+64A=0⟹B=0
−8A−8A=4
A=−1/4
yp=−tcos8t/4
y=yh+yp=c1cos8t+c2sin8t−tcos8t/4
y(0)=c1=1/4
y′=−2sin8t+8c2cos8t−cos8t/4+2tsin8t
y′(0)=8c2−1/4=0
c2=1/32
y(t)=cos8t/4+sin8t/32−tcos8t/4
Comments