Question #276511

Evaluate: ∫4 𝑥𝑒𝑥 dx.


1
Expert's answer
2021-12-13T06:37:24-0500

4𝑥𝑒𝑥dx∫4 𝑥𝑒^𝑥 dx


Apply linearity


4xexdx4\smallint{xe^x}dx


Now solving xexdx\smallint{xe^x}dx


Integrate by parts fg=fgfg\smallint fg'=fg- \smallint f'g


f=xf=x g=exg'=e^x

f=1f'=1 g=exg=e^x


=xexexdx=xe^x-\smallint e^xdx


Now solving exdx\smallint e^xdx


Apply exponential rule,

aex=axln(a)\smallint ae^x=\frac{a^x}{ln(a)} With a=ea=e


=ex=e^x


Plug in solved integrals

=xexexdx=xexex=xe^x-\smallint e^xdx =xe^x- e^x


Plug in solved integrals


4xexdx=4xex4ex4\smallint xe^xdx=4 xe^x-4e^x


The solved problem

4𝑥𝑒𝑥dx∫4 𝑥𝑒^𝑥 dx =4xex4ex+c=4xe^x-4e^x+c


=4(x1)ex+c=4(x-1)e^x+c



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS