Evaluate: ∫4 𝑥𝑒𝑥 dx.
"\u222b4 \ud835\udc65\ud835\udc52^\ud835\udc65 dx"
Apply linearity
"4\\smallint{xe^x}dx"
Now solving "\\smallint{xe^x}dx"
Integrate by parts "\\smallint fg'=fg- \\smallint f'g"
"f=x" "g'=e^x"
"f'=1" "g=e^x"
"=xe^x-\\smallint e^xdx"
Now solving "\\smallint e^xdx"
Apply exponential rule,
"\\smallint ae^x=\\frac{a^x}{ln(a)}" With "a=e"
"=e^x"
Plug in solved integrals
"=xe^x-\\smallint e^xdx\n=xe^x- e^x"
Plug in solved integrals
"4\\smallint xe^xdx=4\nxe^x-4e^x"
The solved problem
"\u222b4 \ud835\udc65\ud835\udc52^\ud835\udc65 dx" "=4xe^x-4e^x+c"
"=4(x-1)e^x+c"
Comments
Leave a comment