Question #276727

Differentiate of the following functions with respect to x:


i) 𝑡𝑎𝑛𝑥∙ 𝑙𝑛(𝑠𝑖𝑛𝑥)


ii) √𝑐𝑜𝑡√𝑥


iii) 𝑒 ln (𝑡𝑎𝑛5𝑥)


iv) 𝑆𝑖𝑛2


{ln(𝑠𝑒𝑐𝑥)}


v) ln (𝑐𝑜𝑠𝑒𝑐𝑥)/𝑥


1
Expert's answer
2021-12-09T14:56:16-0500

i)


(tanxln(sinx))=ln(sinx)cos2x(\tan x\cdot\ln(\sin x) )'=\dfrac{\ln(\sin x)}{\cos^2 x}

+tanx(1sinx)(cosx)=ln(sinx)cos2x+1+\tan x(\dfrac{1}{\sin x})(\cos x)=\dfrac{\ln(\sin x)}{\cos^2 x}+1

ii)


(cot(x))=12cot(x)(1sin2(x))(12x)\bigg(\sqrt{\cot(\sqrt{x})}\bigg)'=\dfrac{1}{2\sqrt{\cot(\sqrt{x})}}(-\dfrac{1}{\sin ^2 (\sqrt{x})})(\dfrac{1}{2\sqrt{x}})

=14sin2(x)xcot(x)=-\dfrac{1}{4\sin ^2 (\sqrt{x})\sqrt{x\cot(\sqrt{x})}}



iii)


(eln(tanx))=(tanx)=1cos2x(e^{\ln (\tan x)})'=(\tan x)'=\dfrac{1}{\cos ^2 x}

iv)


(sin2(ln(secx)))=(sin2(ln(1cosx)))\bigg(\sin^2(\ln(\sec x))\bigg)'=\bigg(\sin^2(\ln(\dfrac{1}{\cos x}))\bigg)'

=(sin2(ln(cosx)))=\bigg(\sin^2(\ln(\cos x))\bigg)'

=2sin(ln(cosx))cos(ln(cosx))(1cosx)(sinx)=2\sin(\ln(\cos x))\cos(\ln(\cos x))(\dfrac{1}{\cos x})(-\sin x)

=tanxsin(2ln(cosx))=-\tan x\cdot\sin\big(2\ln(\cos x)\big)

v)


(ln(cosecx)x)=(ln(1/sinx)x)(\dfrac{\ln(\cosec x)}{x})'=(\dfrac{\ln(1/\sin x)}{x})'

=(ln(sinx)x)=cosxsinx(x)ln(sinx)x2=-(\dfrac{\ln(\sin x)}{x})'=-\dfrac{\dfrac{\cos x}{\sin x}(x)-\ln(\sin x)}{x^2}

=ln(sinx)xcotxx2=\dfrac{\ln(\sin x)-x\cot x}{x^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS