Answer to Question #276727 in Calculus for Somu

Question #276727

Differentiate of the following functions with respect to x:


i) ๐‘ก๐‘Ž๐‘›๐‘ฅโˆ™ ๐‘™๐‘›(๐‘ ๐‘–๐‘›๐‘ฅ)


ii) โˆš๐‘๐‘œ๐‘กโˆš๐‘ฅ


iii) ๐‘’ ln (๐‘ก๐‘Ž๐‘›5๐‘ฅ)


iv) ๐‘†๐‘–๐‘›2


{ln(๐‘ ๐‘’๐‘๐‘ฅ)}


v) ln (๐‘๐‘œ๐‘ ๐‘’๐‘๐‘ฅ)/๐‘ฅ


1
Expert's answer
2021-12-09T14:56:16-0500

i)


"(\\tan x\\cdot\\ln(\\sin x) )'=\\dfrac{\\ln(\\sin x)}{\\cos^2 x}"

"+\\tan x(\\dfrac{1}{\\sin x})(\\cos x)=\\dfrac{\\ln(\\sin x)}{\\cos^2 x}+1"

ii)


"\\bigg(\\sqrt{\\cot(\\sqrt{x})}\\bigg)'=\\dfrac{1}{2\\sqrt{\\cot(\\sqrt{x})}}(-\\dfrac{1}{\\sin ^2 (\\sqrt{x})})(\\dfrac{1}{2\\sqrt{x}})"

"=-\\dfrac{1}{4\\sin ^2 (\\sqrt{x})\\sqrt{x\\cot(\\sqrt{x})}}"



iii)


"(e^{\\ln (\\tan x)})'=(\\tan x)'=\\dfrac{1}{\\cos ^2 x}"

iv)


"\\bigg(\\sin^2(\\ln(\\sec x))\\bigg)'=\\bigg(\\sin^2(\\ln(\\dfrac{1}{\\cos x}))\\bigg)'"

"=\\bigg(\\sin^2(\\ln(\\cos x))\\bigg)'"

"=2\\sin(\\ln(\\cos x))\\cos(\\ln(\\cos x))(\\dfrac{1}{\\cos x})(-\\sin x)"

"=-\\tan x\\cdot\\sin\\big(2\\ln(\\cos x)\\big)"

v)


"(\\dfrac{\\ln(\\cosec x)}{x})'=(\\dfrac{\\ln(1\/\\sin x)}{x})'"

"=-(\\dfrac{\\ln(\\sin x)}{x})'=-\\dfrac{\\dfrac{\\cos x}{\\sin x}(x)-\\ln(\\sin x)}{x^2}"

"=\\dfrac{\\ln(\\sin x)-x\\cot x}{x^2}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog