Let E:=Exi+Eyj+Ezk and H:=Hxi+Hyj+Hzk be two vectors assumed to have continuous partial derivatives (of second order at least) with respect to position and time. Suppose further that E and H satisfy the equations:
∇⋅E=0,∇⋅H=0,∇×E=−1/c. ∂H/∂t, ∇×H=1/c. ∂E/∂t
prove that E and H satisfy the equation
∇^2Ei =1/c^2. ∂^2Ei/∂t^2 and ∇^2Hi=1/c^2. ∂^2Hi/∂t^2
Here, i=x,y or z.
Hint: Use the fact that∇×(∇×V)=∇(∇⋅V)−∇^V.
"\u2207\u00d7(\u2207\u00d7E)=-\\frac{1}{c}\\frac{\\partial (\u2207\u00d7H)}{\\partial t}=-\\frac{1}{c^2}\\frac{\\partial E^2}{\\partial t^2}"
"\u2207\u00d7(\u2207\u00d7E)=\u2207(\u2207\u22c5E)\u2212\u2207^2E=\u2212\u2207^2E"
"\u2207^2E=\\frac{1}{c^2}\\frac{\\partial E^2}{\\partial t^2}"
"\u2207^2E_i=\\frac{1}{c^2}\\frac{\\partial E_i^2}{\\partial t^2}"
"\u2207\u00d7(\u2207\u00d7H)=\\frac{1}{c}\\frac{\\partial (\u2207\u00d7E)}{\\partial t}=-\\frac{1}{c^2}\\frac{\\partial H^2}{\\partial t^2}"
"\u2207\u00d7(\u2207\u00d7H)=\u2207(\u2207\u22c5H)\u2212\u2207^2H=\u2212\u2207^2H"
"\u2207^2H=\\frac{1}{c^2}\\frac{\\partial H^2}{\\partial t^2}"
"\u2207^2H_i=\\frac{1}{c^2}\\frac{\\partial H_i^2}{\\partial t^2}"
Comments
Leave a comment