Let r=xi^+yj^+zk^ and r=||r||. Show that:
∇(lnr)=r/r^2.
and
∇×((r^n)r)=0.
We have "\\nabla (\\ln r)=\\nabla (\\ln (\\sqrt{x^2+y^2+z^2}))=\\frac{1}{2}\\nabla \\ln(x^2+y^2+z^2)". Now let us calculate the "x-" coordinate of this gradient (as the other will have the symmetric expression) :
"\\nabla(\\ln r)_x = \\frac{x}{x^2+y^2+z^2}=(\\frac{\\vec{r}}{|r|^2})_x"
and therefore we have "\\nabla (\\ln r)= \\frac{\\vec{r}}{r^2}" .
Now let us calculate the "x-"coordinate of "\\nabla \\times (r^n \\vec{r})", the result for other coordinates will follow from the symmetry of the expression of "r(x,y,z)".
"\\nabla\\times (r^n \\vec{r})_x = \\frac{\\partial}{\\partial y}(r^nz)-\\frac{\\partial}{\\partial z}(r^ny)", now expanding this expression gives
"\\nabla\\times (r^n\\vec{r})_x = nr^{n-2} yz - nr^{n-2}zy=0"
and therefore "\\nabla\\times(r^n\\vec{r})=0"
Comments
Leave a comment