Find the exact arc length of the curve
x = e ^ 2t* (sin t + cos t) , y=e^2t(sin t - cos t) ; (−1≤t≤1)
"=e^{2t}(3\\cos t-\\sin t)"
"=e^{2t}(\\cos t+3\\sin t)"
"(x'_t)^2+(y'_t)^2=e^{4t}(9\\cos^2 t-6\\sin t\\cos t+\\sin ^2 t"
"+\\cos^2 t+6\\sin t\\cos t+9\\sin ^2 t)=10e^{4t}"
"L=\\displaystyle\\int_{-1}^1\\sqrt{(x'_t)^2+(y'_t)^2}dt"
"=\\displaystyle\\int_{-1}^1\\sqrt{10e^{4t}}dt"
"=\\dfrac{\\sqrt{10}}{2}[e^{2t}]\\begin{matrix}\n 1 \\\\\n -1\n\\end{matrix}=\\sqrt{10}(\\dfrac{e^2-e^{-2}}{2})"
"=\\sqrt{10}\\sinh(2)\\ (units)"
Comments
Leave a comment