If l,m, be the portions of the axes of x and y intercepted by the tangent at any point x, y on the curve (x/a)^2/3+
(y/b)^2/3=1 , show that (l)^2/(a)^2 + (m)^2/(b)^2 =1
"\\frac{x}{a}^{\\frac{2}{3}}+\\frac{y}{b}^{\\frac{2}{3}}=1"
"(\\frac{2}{3}(\\frac{x}{a}^{\\frac{-1}{3}})\\times\\frac{1}{a}+\\frac{2}{3}(\\frac{y}{b}^{\\frac{-1}{3}})\\times\\frac{1}{b})\\frac{dy}{dx}=0"
"(\\frac{y}{b}^{\\frac{-1}{3}})\\times\\frac{1}{b})\\frac{dy}{dx}=-(\\frac{x}{a}^{\\frac{-1}{3}})\\times\\frac{1}{a}"
"\\frac{dy}{dx}=-\\frac{b}{a}(\\frac{\\frac{x}{a}}{\\frac{y}{b}})^-\\frac{1}{3}"
"=" "(-\\frac{b}{a})^{\\frac{2}{3}}(\\frac{x}{y})^{\\frac{-1}{3}}"
"let\\ A(x_1,y_1)\\implies m=(-\\frac{b}{a})^{\\frac{2}{3}}(\\frac{x}{y})^{\\frac{-1}{3}}"
Equation of the tangent is
"y-y_1=m(x-x_1)"
"y-y_1=(-\\frac{b}{a})^{\\frac{2}{3}}(\\frac{x}{y})^{\\frac{-1}{3}}(x-x_1)"
open by cross multiplying
"a^{\\frac{2}{3}}x_1^{\\frac{1}{3}}y-a^{\\frac{2}{3}}x^{\\frac{1}{3}}y_1=-b^{\\frac{2}{3}}y_1^{\\frac{1}{3}}x_1+b^{\\frac{2}{3}}y_1^{\\frac{1}{3}}x_1"
"(b^{\\frac{2}{3}}y_1^{\\frac{1}{3}})x+(a^{\\frac{2}{3}}x^{\\frac{1}{3}})y=x_1^{\\frac{1}{3}}y_1^{\\frac{1}{3}}[a^{\\frac{2}{3}}y_1^{\\frac{2}{3}}+b^{\\frac{2}{3}}x^{\\frac{2}{3}}]"
"x_1^{\\frac{1}{3}}y_1^{\\frac{2}{3}}a^{\\frac{2}{3}}b^{\\frac{2}{3}}[\\frac{x_1}{a}^{\\frac{2}{3}}+\\frac{y_1}{b}^{\\frac{2}{3}}]..................equqation \\ 1"
"\\frac{x}{a}^{\\frac{2}{3}}+\\frac{y}{b}^{\\frac{2}{3}}=1"
equation 1"\\implies(b^{\\frac{2}{3}}y_1^{\\frac{1}{3}})x+(a^{\\frac{2}{3}}x^{\\frac{1}{3}})y=x_1^{\\frac{1}{3}}y_1^{\\frac{2}{3}}a^{\\frac{2}{3}}b^{\\frac{2}{3}}"
"\\frac{x}{x_1^{\\frac{1}{3}}a^{\\frac{2}{3}}}+\\frac{y}{y_1^{\\frac{1}{3}}b^{\\frac{2}{3}}}=1"
as per given a=I b=M
"I=x_1^{\\frac{1}{3}}a^{\\frac{2}{3}}"
M="y_1^{\\frac{1}{3}}b^{\\frac{2}{3}}"
hence
"\\frac{x_1}{a}^{\\frac{2}{3}}+\\frac{y_1}{b}^{\\frac{2}{3}}=1"
Comments
Leave a comment