Answer to Question #268954 in Calculus for Tithi

Question #268954

If l,m, be the portions of the axes of x and y intercepted by the tangent at any point x, y on the curve (x/a)^2/3+


(y/b)^2/3=1 , show that (l)^2/(a)^2 + (m)^2/(b)^2 =1

1
Expert's answer
2021-11-22T18:47:33-0500


"\\frac{x}{a}^{\\frac{2}{3}}+\\frac{y}{b}^{\\frac{2}{3}}=1"


"(\\frac{2}{3}(\\frac{x}{a}^{\\frac{-1}{3}})\\times\\frac{1}{a}+\\frac{2}{3}(\\frac{y}{b}^{\\frac{-1}{3}})\\times\\frac{1}{b})\\frac{dy}{dx}=0"


"(\\frac{y}{b}^{\\frac{-1}{3}})\\times\\frac{1}{b})\\frac{dy}{dx}=-(\\frac{x}{a}^{\\frac{-1}{3}})\\times\\frac{1}{a}"


"\\frac{dy}{dx}=-\\frac{b}{a}(\\frac{\\frac{x}{a}}{\\frac{y}{b}})^-\\frac{1}{3}"


"=" "(-\\frac{b}{a})^{\\frac{2}{3}}(\\frac{x}{y})^{\\frac{-1}{3}}"


"let\\ A(x_1,y_1)\\implies m=(-\\frac{b}{a})^{\\frac{2}{3}}(\\frac{x}{y})^{\\frac{-1}{3}}"


Equation of the tangent is

"y-y_1=m(x-x_1)"


"y-y_1=(-\\frac{b}{a})^{\\frac{2}{3}}(\\frac{x}{y})^{\\frac{-1}{3}}(x-x_1)"


open by cross multiplying


"a^{\\frac{2}{3}}x_1^{\\frac{1}{3}}y-a^{\\frac{2}{3}}x^{\\frac{1}{3}}y_1=-b^{\\frac{2}{3}}y_1^{\\frac{1}{3}}x_1+b^{\\frac{2}{3}}y_1^{\\frac{1}{3}}x_1"


"(b^{\\frac{2}{3}}y_1^{\\frac{1}{3}})x+(a^{\\frac{2}{3}}x^{\\frac{1}{3}})y=x_1^{\\frac{1}{3}}y_1^{\\frac{1}{3}}[a^{\\frac{2}{3}}y_1^{\\frac{2}{3}}+b^{\\frac{2}{3}}x^{\\frac{2}{3}}]"


"x_1^{\\frac{1}{3}}y_1^{\\frac{2}{3}}a^{\\frac{2}{3}}b^{\\frac{2}{3}}[\\frac{x_1}{a}^{\\frac{2}{3}}+\\frac{y_1}{b}^{\\frac{2}{3}}]..................equqation \\ 1"


"\\frac{x}{a}^{\\frac{2}{3}}+\\frac{y}{b}^{\\frac{2}{3}}=1"


equation 1"\\implies(b^{\\frac{2}{3}}y_1^{\\frac{1}{3}})x+(a^{\\frac{2}{3}}x^{\\frac{1}{3}})y=x_1^{\\frac{1}{3}}y_1^{\\frac{2}{3}}a^{\\frac{2}{3}}b^{\\frac{2}{3}}"


"\\frac{x}{x_1^{\\frac{1}{3}}a^{\\frac{2}{3}}}+\\frac{y}{y_1^{\\frac{1}{3}}b^{\\frac{2}{3}}}=1"




as per given a=I b=M


"I=x_1^{\\frac{1}{3}}a^{\\frac{2}{3}}"


M="y_1^{\\frac{1}{3}}b^{\\frac{2}{3}}"


hence

"\\frac{x_1}{a}^{\\frac{2}{3}}+\\frac{y_1}{b}^{\\frac{2}{3}}=1"










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS