Consider the function f(x)=7(x−4)^2/3
f(x)=7(x−4)2/3. For this function there are two important intervals: (−∞,A)
(−∞,A) and (A,∞)
(A,∞) where A
A is a critical number.
Domain: (−∞,∞)(-\infin, \infin)(−∞,∞)
Find the critical number(s)
f′(x)f'(x)f′(x) does not exist, if x=4.x=4.x=4.
The critical number is 4.4.4.
If x∈(−∞,4),f′(x)<0,f(x)x\in (-\infin, 4), f'(x)<0, f(x)x∈(−∞,4),f′(x)<0,f(x) decreases.
If x∈(4,∞),f′(x)>0,f(x)x\in (4,\infin), f'(x)>0, f(x)x∈(4,∞),f′(x)>0,f(x) increases.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments