Question #268903

 Consider the function f(x)=7(x−4)^2/3

f(x)=7(x−4)2/3. For this function there are two important intervals: (−∞,A)

(−∞,A) and (A,∞)

(A,∞) where A

A is a critical number.


1
Expert's answer
2021-11-22T12:37:45-0500

f(x)=7(x4)2/3f(x)=7(x-4)^{2/3}

Domain: (,)(-\infin, \infin)


f(x)=(7(x4)2/3)=7(23)(x4)1/3=143(x4)1/3f'(x)=(7(x-4)^{2/3})' =7(\dfrac{2}{3})(x-4)^{-1/3}=\dfrac{14}{3}(x-4)^{-1/3}

=143(x4)1/3=\dfrac{14}{3}(x-4)^{-1/3}

Find the critical number(s)

f(x)f'(x) does not exist, if x=4.x=4.

The critical number is 4.4.

If x(,4),f(x)<0,f(x)x\in (-\infin, 4), f'(x)<0, f(x) decreases.

If x(4,),f(x)>0,f(x)x\in (4,\infin), f'(x)>0, f(x) increases.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS