Consider the function f(x)=7(x−4)^2/3
f(x)=7(x−4)2/3. For this function there are two important intervals: (−∞,A)
(−∞,A) and (A,∞)
(A,∞) where A
A is a critical number.
"f(x)=7(x-4)^{2\/3}"
Domain: "(-\\infin, \\infin)"
"=\\dfrac{14}{3}(x-4)^{-1\/3}"
Find the critical number(s)
"f'(x)" does not exist, if "x=4."
The critical number is "4."
If "x\\in (-\\infin, 4), f'(x)<0, f(x)" decreases.
If "x\\in (4,\\infin), f'(x)>0, f(x)" increases.
Comments
Leave a comment