Question #268884

Find the mass and center of gravity of the lamina lamina with density δ(x, y) = x + y is bounded by the x-axis, the

line x = 1, and the curve y =

x..


1
Expert's answer
2021-11-26T14:21:15-0500

The mass of a lamina occupying the region DD and having density function δ(x,y)\delta(x,y) is


m=Dδ(x,y)dAm=\int\int_D \delta(x, y) dA


m=010x(x+y)dydxm=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{\sqrt{x}}(x+y)dydx

=01[xy+y22]x0dx=\displaystyle\int_{0}^{1}[xy+\dfrac{y^2}{2}]\begin{matrix} \sqrt{x} \\ 0 \end{matrix}dx

=01(xx+x2)dx=\displaystyle\int_{0}^{1}(x \sqrt{x}+\dfrac{x}{2})dx

=[2x5/25+x24]10=[\dfrac{2x^{5/2}}{5}+\dfrac{x^2}{4}]\begin{matrix} 1 \\ 0 \end{matrix}

=25+14=1320 (units of mass)=\dfrac{2}{5}+\dfrac{1}{4}=\dfrac{13}{20} \ (units \ of\ mass)

My=010xx(x+y)dydxM_y=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{\sqrt{x}}x(x+y)dydx

=01x[xy+y22]x0dx=\displaystyle\int_{0}^{1}x[xy+\dfrac{y^2}{2}]\begin{matrix} \sqrt{x} \\ 0 \end{matrix}dx

=01(x2x+x22)dx=\displaystyle\int_{0}^{1}(x^2 \sqrt{x}+\dfrac{x^2}{2})dx

=[2x7/27+x36]10=[\dfrac{2x^{7/2}}{7}+\dfrac{x^3}{6}]\begin{matrix} 1 \\ 0 \end{matrix}

=27+16=1942=\dfrac{2}{7}+\dfrac{1}{6}=\dfrac{19}{42}


Mx=010xy(x+y)dydxM_x=\displaystyle\int_{0}^{1}\displaystyle\int_{0}^{\sqrt{x}}y(x+y)dydx

=01[xy22+y33]x0dx=\displaystyle\int_{0}^{1}[\dfrac{xy^2}{2}+\dfrac{y^3}{3}]\begin{matrix} \sqrt{x} \\ 0 \end{matrix}dx

=01(x22+xx3)dx=\displaystyle\int_{0}^{1}(\dfrac{x^2}{2}+\dfrac{x\sqrt{x}}{3})dx

=[x36+2x5/215]10=[\dfrac{x^3}{6}+\dfrac{2x^{5/2}}{15}]\begin{matrix} 1 \\ 0 \end{matrix}

=16+215=310=\dfrac{1}{6}+\dfrac{2}{15}=\dfrac{3}{10}



xˉ=Mym=19/4213/20=190273\bar{x}=\dfrac{M_y}{m}=\dfrac{19/42}{13/20}=\dfrac{190}{273}

yˉ=Mxm=3/1013/20=613\bar{y}=\dfrac{M_x}{m}=\dfrac{3/10}{13/20}=\dfrac{6}{13}







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS