Answer to Question #268884 in Calculus for Bhuvana

Question #268884

Find the mass and center of gravity of the lamina lamina with density δ(x, y) = x + y is bounded by the x-axis, the

line x = 1, and the curve y =

x..


1
Expert's answer
2021-11-26T14:21:15-0500

The mass of a lamina occupying the region "D" and having density function "\\delta(x,y)" is


"m=\\int\\int_D \\delta(x, y) dA"


"m=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{\\sqrt{x}}(x+y)dydx"

"=\\displaystyle\\int_{0}^{1}[xy+\\dfrac{y^2}{2}]\\begin{matrix}\n \\sqrt{x} \\\\\n 0\n\\end{matrix}dx"

"=\\displaystyle\\int_{0}^{1}(x \\sqrt{x}+\\dfrac{x}{2})dx"

"=[\\dfrac{2x^{5\/2}}{5}+\\dfrac{x^2}{4}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"

"=\\dfrac{2}{5}+\\dfrac{1}{4}=\\dfrac{13}{20} \\ (units \\ of\\ mass)"

"M_y=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{\\sqrt{x}}x(x+y)dydx"

"=\\displaystyle\\int_{0}^{1}x[xy+\\dfrac{y^2}{2}]\\begin{matrix}\n \\sqrt{x} \\\\\n 0\n\\end{matrix}dx"

"=\\displaystyle\\int_{0}^{1}(x^2 \\sqrt{x}+\\dfrac{x^2}{2})dx"

"=[\\dfrac{2x^{7\/2}}{7}+\\dfrac{x^3}{6}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"

"=\\dfrac{2}{7}+\\dfrac{1}{6}=\\dfrac{19}{42}"


"M_x=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{\\sqrt{x}}y(x+y)dydx"

"=\\displaystyle\\int_{0}^{1}[\\dfrac{xy^2}{2}+\\dfrac{y^3}{3}]\\begin{matrix}\n \\sqrt{x} \\\\\n 0\n\\end{matrix}dx"

"=\\displaystyle\\int_{0}^{1}(\\dfrac{x^2}{2}+\\dfrac{x\\sqrt{x}}{3})dx"

"=[\\dfrac{x^3}{6}+\\dfrac{2x^{5\/2}}{15}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"

"=\\dfrac{1}{6}+\\dfrac{2}{15}=\\dfrac{3}{10}"



"\\bar{x}=\\dfrac{M_y}{m}=\\dfrac{19\/42}{13\/20}=\\dfrac{190}{273}"

"\\bar{y}=\\dfrac{M_x}{m}=\\dfrac{3\/10}{13\/20}=\\dfrac{6}{13}"







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS