Find the mass and center of gravity of the lamina lamina with density δ(x, y) = x + y is bounded by the x-axis, the
line x = 1, and the curve y =
√
x..
The mass of a lamina occupying the region "D" and having density function "\\delta(x,y)" is
"=\\displaystyle\\int_{0}^{1}[xy+\\dfrac{y^2}{2}]\\begin{matrix}\n \\sqrt{x} \\\\\n 0\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{1}(x \\sqrt{x}+\\dfrac{x}{2})dx"
"=[\\dfrac{2x^{5\/2}}{5}+\\dfrac{x^2}{4}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{2}{5}+\\dfrac{1}{4}=\\dfrac{13}{20} \\ (units \\ of\\ mass)"
"M_y=\\displaystyle\\int_{0}^{1}\\displaystyle\\int_{0}^{\\sqrt{x}}x(x+y)dydx"
"=\\displaystyle\\int_{0}^{1}x[xy+\\dfrac{y^2}{2}]\\begin{matrix}\n \\sqrt{x} \\\\\n 0\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{1}(x^2 \\sqrt{x}+\\dfrac{x^2}{2})dx"
"=[\\dfrac{2x^{7\/2}}{7}+\\dfrac{x^3}{6}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{2}{7}+\\dfrac{1}{6}=\\dfrac{19}{42}"
"=\\displaystyle\\int_{0}^{1}[\\dfrac{xy^2}{2}+\\dfrac{y^3}{3}]\\begin{matrix}\n \\sqrt{x} \\\\\n 0\n\\end{matrix}dx"
"=\\displaystyle\\int_{0}^{1}(\\dfrac{x^2}{2}+\\dfrac{x\\sqrt{x}}{3})dx"
"=[\\dfrac{x^3}{6}+\\dfrac{2x^{5\/2}}{15}]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{6}+\\dfrac{2}{15}=\\dfrac{3}{10}"
"\\bar{y}=\\dfrac{M_x}{m}=\\dfrac{3\/10}{13\/20}=\\dfrac{6}{13}"
Comments
Leave a comment