Question #268883

Perform the integration by transforming the ellipsoidal region of integration into a spherical region of integration and

then evaluating the transformed integral in spherical coordinates.

(a) RRR

G

x

2 dV , where G is the region enclosed by the ellipsoid 9x

2 + 4y

2 + z

2 = 36.

(b) RRR

G

(y

2 + z

2

) dV , where G is the region enclosed by the ellipsoid x

2

a

2

+

y

2

b

2

+

z

2

c

2

= 1


1
Expert's answer
2021-11-30T14:03:23-0500

Gx2dv\int\int\int_G x^2dv


where G is 9x2+4y2+z2=369x^2+4y^2+z^2=36


x24+y29+z236=1\frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{36}=1


let x=2u,y=3v,z=6wx=2u, y=3v, z=6w


(x2)2+(y3)2+(z6)2=1    u2+v2+w2=1(\frac{x}{2})^2+(\frac{y}{3})^2+(\frac{z}{6})^2=1\implies u^2+v^2+w^2=1


then

Gx2dv=uvwf(u,v,w)jdudvdw\int\int\int_G x^2dv=\int_u\int_v\int_w f(u,v,w)|j|dudvdw


where

f(u,v,w)=4u2f(u,v,w)=4u^2


j=δ(x,y,z)δ(u,v,w)=xuxvxwyuyvywzuzvzw=200030006=36|j|=\frac{\delta(x,y,z)}{\delta(u,v,w)}=\begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v&y_w\\ z_u & z_v& z_w \end{vmatrix}=\begin{vmatrix} 2 & 0& 0 \\ 0 & 3&0\\ 0 & 0& 6 \end{vmatrix}=36



=uvw144u2dudvdw=\int_u\int_v\int_w 144u^2dudvdw


let u=rcosθsinϕ,v=rsinθsinϕ,w=rcosθu=rcos\theta sin\phi, v=rsin\theta sin\phi,w=rcos\theta

u2+v2+w2=1    r2=1u^2+v^2+w^2=1\implies r^2=1


uvw144u2dudvdw=rθϕ144r2cos2θsin2ϕ(r2sinθ)drdθdϕ\int_u\int_v\int_w 144u^2dudvdw=\int_r\int_\theta\int_\phi 144r^2cos^2\theta sin^2\phi(r^2sin\theta)drd\theta d\phi



=r=01θ=0πϕ=02π144r2(sinθcos2θ)(sin2ϕ)drdθdϕ=\int_{r=0}^1\int_{\theta=0}^\pi\int_{\phi=0}^{2\pi} 144r^2(sin\theta cos^2\theta)(sin^2\phi)drd\theta d\phi


=144[r55]01[ϕ2sin2ϕ4]02π(θ=0π(sinθcos2θ)dθ)=144[\frac{r^5}{5}]_0^1[\frac{\phi}{2}-\frac{sin2\phi}{4}]_0^{2\pi}(\int_{\theta=0}^\pi(sin\theta cos^2\theta)d\theta)




=144(15)(π2)(23)=144π15=144(\frac{1}{5})(\frac{\pi}{2})(\frac{2}{3})=\frac{144\pi}{15}




=144π15=\frac{144\pi}{15}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS