∫ ∫ ∫ G x 2 d v \int\int\int_G x^2dv ∫∫ ∫ G x 2 d v
where G is 9 x 2 + 4 y 2 + z 2 = 36 9x^2+4y^2+z^2=36 9 x 2 + 4 y 2 + z 2 = 36
x 2 4 + y 2 9 + z 2 36 = 1 \frac{x^2}{4}+\frac{y^2}{9}+\frac{z^2}{36}=1 4 x 2 + 9 y 2 + 36 z 2 = 1
let x = 2 u , y = 3 v , z = 6 w x=2u, y=3v, z=6w x = 2 u , y = 3 v , z = 6 w
( x 2 ) 2 + ( y 3 ) 2 + ( z 6 ) 2 = 1 ⟹ u 2 + v 2 + w 2 = 1 (\frac{x}{2})^2+(\frac{y}{3})^2+(\frac{z}{6})^2=1\implies u^2+v^2+w^2=1 ( 2 x ) 2 + ( 3 y ) 2 + ( 6 z ) 2 = 1 ⟹ u 2 + v 2 + w 2 = 1
then
∫ ∫ ∫ G x 2 d v = ∫ u ∫ v ∫ w f ( u , v , w ) ∣ j ∣ d u d v d w \int\int\int_G x^2dv=\int_u\int_v\int_w f(u,v,w)|j|dudvdw ∫∫ ∫ G x 2 d v = ∫ u ∫ v ∫ w f ( u , v , w ) ∣ j ∣ d u d v d w
where
f ( u , v , w ) = 4 u 2 f(u,v,w)=4u^2 f ( u , v , w ) = 4 u 2
∣ j ∣ = δ ( x , y , z ) δ ( u , v , w ) = ∣ x u x v x w y u y v y w z u z v z w ∣ = ∣ 2 0 0 0 3 0 0 0 6 ∣ = 36 |j|=\frac{\delta(x,y,z)}{\delta(u,v,w)}=\begin{vmatrix}
x_u & x_v & x_w \\
y_u & y_v&y_w\\ z_u & z_v& z_w
\end{vmatrix}=\begin{vmatrix}
2 & 0& 0 \\
0 & 3&0\\ 0 & 0& 6
\end{vmatrix}=36 ∣ j ∣ = δ ( u , v , w ) δ ( x , y , z ) = ∣ ∣ x u y u z u x v y v z v x w y w z w ∣ ∣ = ∣ ∣ 2 0 0 0 3 0 0 0 6 ∣ ∣ = 36
= ∫ u ∫ v ∫ w 144 u 2 d u d v d w =\int_u\int_v\int_w 144u^2dudvdw = ∫ u ∫ v ∫ w 144 u 2 d u d v d w
let u = r c o s θ s i n ϕ , v = r s i n θ s i n ϕ , w = r c o s θ u=rcos\theta sin\phi, v=rsin\theta sin\phi,w=rcos\theta u = rcos θ s in ϕ , v = rs in θ s in ϕ , w = rcos θ
u 2 + v 2 + w 2 = 1 ⟹ r 2 = 1 u^2+v^2+w^2=1\implies r^2=1 u 2 + v 2 + w 2 = 1 ⟹ r 2 = 1
∫ u ∫ v ∫ w 144 u 2 d u d v d w = ∫ r ∫ θ ∫ ϕ 144 r 2 c o s 2 θ s i n 2 ϕ ( r 2 s i n θ ) d r d θ d ϕ \int_u\int_v\int_w 144u^2dudvdw=\int_r\int_\theta\int_\phi 144r^2cos^2\theta sin^2\phi(r^2sin\theta)drd\theta d\phi ∫ u ∫ v ∫ w 144 u 2 d u d v d w = ∫ r ∫ θ ∫ ϕ 144 r 2 co s 2 θ s i n 2 ϕ ( r 2 s in θ ) d r d θ d ϕ
= ∫ r = 0 1 ∫ θ = 0 π ∫ ϕ = 0 2 π 144 r 2 ( s i n θ c o s 2 θ ) ( s i n 2 ϕ ) d r d θ d ϕ =\int_{r=0}^1\int_{\theta=0}^\pi\int_{\phi=0}^{2\pi} 144r^2(sin\theta cos^2\theta)(sin^2\phi)drd\theta d\phi = ∫ r = 0 1 ∫ θ = 0 π ∫ ϕ = 0 2 π 144 r 2 ( s in θ co s 2 θ ) ( s i n 2 ϕ ) d r d θ d ϕ
= 144 [ r 5 5 ] 0 1 [ ϕ 2 − s i n 2 ϕ 4 ] 0 2 π ( ∫ θ = 0 π ( s i n θ c o s 2 θ ) d θ ) =144[\frac{r^5}{5}]_0^1[\frac{\phi}{2}-\frac{sin2\phi}{4}]_0^{2\pi}(\int_{\theta=0}^\pi(sin\theta cos^2\theta)d\theta) = 144 [ 5 r 5 ] 0 1 [ 2 ϕ − 4 s in 2 ϕ ] 0 2 π ( ∫ θ = 0 π ( s in θ co s 2 θ ) d θ )
= 144 ( 1 5 ) ( π 2 ) ( 2 3 ) = 144 π 15 =144(\frac{1}{5})(\frac{\pi}{2})(\frac{2}{3})=\frac{144\pi}{15} = 144 ( 5 1 ) ( 2 π ) ( 3 2 ) = 15 144 π
= 144 π 15 =\frac{144\pi}{15} = 15 144 π
Comments