∫∫∫Gx2dv
where G is 9x2+4y2+z2=36
4x2+9y2+36z2=1
let x=2u,y=3v,z=6w
(2x)2+(3y)2+(6z)2=1⟹u2+v2+w2=1
then
∫∫∫Gx2dv=∫u∫v∫wf(u,v,w)∣j∣dudvdw
where
f(u,v,w)=4u2
∣j∣=δ(u,v,w)δ(x,y,z)=∣∣xuyuzuxvyvzvxwywzw∣∣=∣∣200030006∣∣=36
=∫u∫v∫w144u2dudvdw
let u=rcosθsinϕ,v=rsinθsinϕ,w=rcosθ
u2+v2+w2=1⟹r2=1
∫u∫v∫w144u2dudvdw=∫r∫θ∫ϕ144r2cos2θsin2ϕ(r2sinθ)drdθdϕ
=∫r=01∫θ=0π∫ϕ=02π144r2(sinθcos2θ)(sin2ϕ)drdθdϕ
=144[5r5]01[2ϕ−4sin2ϕ]02π(∫θ=0π(sinθcos2θ)dθ)
=144(51)(2π)(32)=15144π
=15144π
Comments