Perform the integration by transforming the ellipsoidal region of integration into a spherical region of integration and
then evaluating the transformed integral in spherical coordinates.
(a) RRR
G
x
2 dV , where G is the region enclosed by the ellipsoid 9x
2 + 4y
2 + z
2 = 36.
(b) RRR
G
(y
2 + z
2
) dV , where G is the region enclosed by the ellipsoid x
2
a
2
+
y
2
b
2
+
z
2
c
2
= 1
"\\int\\int\\int_G x^2dv"
where G is "9x^2+4y^2+z^2=36"
"\\frac{x^2}{4}+\\frac{y^2}{9}+\\frac{z^2}{36}=1"
let "x=2u, y=3v, z=6w"
"(\\frac{x}{2})^2+(\\frac{y}{3})^2+(\\frac{z}{6})^2=1\\implies u^2+v^2+w^2=1"
then
"\\int\\int\\int_G x^2dv=\\int_u\\int_v\\int_w f(u,v,w)|j|dudvdw"
where
"f(u,v,w)=4u^2"
"|j|=\\frac{\\delta(x,y,z)}{\\delta(u,v,w)}=\\begin{vmatrix}\n x_u & x_v & x_w \\\\\n y_u & y_v&y_w\\\\ z_u & z_v& z_w\n\\end{vmatrix}=\\begin{vmatrix}\n 2 & 0& 0 \\\\\n 0 & 3&0\\\\ 0 & 0& 6\n\\end{vmatrix}=36"
"=\\int_u\\int_v\\int_w 144u^2dudvdw"
let "u=rcos\\theta sin\\phi, v=rsin\\theta sin\\phi,w=rcos\\theta"
"u^2+v^2+w^2=1\\implies r^2=1"
"\\int_u\\int_v\\int_w 144u^2dudvdw=\\int_r\\int_\\theta\\int_\\phi 144r^2cos^2\\theta sin^2\\phi(r^2sin\\theta)drd\\theta d\\phi"
Comments
Leave a comment