Answer to Question #268883 in Calculus for Bhuvana

Question #268883

Perform the integration by transforming the ellipsoidal region of integration into a spherical region of integration and

then evaluating the transformed integral in spherical coordinates.

(a) RRR

G

x

2 dV , where G is the region enclosed by the ellipsoid 9x

2 + 4y

2 + z

2 = 36.

(b) RRR

G

(y

2 + z

2

) dV , where G is the region enclosed by the ellipsoid x

2

a

2

+

y

2

b

2

+

z

2

c

2

= 1


1
Expert's answer
2021-11-30T14:03:23-0500

"\\int\\int\\int_G x^2dv"


where G is "9x^2+4y^2+z^2=36"


"\\frac{x^2}{4}+\\frac{y^2}{9}+\\frac{z^2}{36}=1"


let "x=2u, y=3v, z=6w"


"(\\frac{x}{2})^2+(\\frac{y}{3})^2+(\\frac{z}{6})^2=1\\implies u^2+v^2+w^2=1"


then

"\\int\\int\\int_G x^2dv=\\int_u\\int_v\\int_w f(u,v,w)|j|dudvdw"


where

"f(u,v,w)=4u^2"


"|j|=\\frac{\\delta(x,y,z)}{\\delta(u,v,w)}=\\begin{vmatrix}\n x_u & x_v & x_w \\\\\n y_u & y_v&y_w\\\\ z_u & z_v& z_w\n\\end{vmatrix}=\\begin{vmatrix}\n 2 & 0& 0 \\\\\n 0 & 3&0\\\\ 0 & 0& 6\n\\end{vmatrix}=36"



"=\\int_u\\int_v\\int_w 144u^2dudvdw"


let "u=rcos\\theta sin\\phi, v=rsin\\theta sin\\phi,w=rcos\\theta"

"u^2+v^2+w^2=1\\implies r^2=1"


"\\int_u\\int_v\\int_w 144u^2dudvdw=\\int_r\\int_\\theta\\int_\\phi 144r^2cos^2\\theta sin^2\\phi(r^2sin\\theta)drd\\theta d\\phi"



"=\\int_{r=0}^1\\int_{\\theta=0}^\\pi\\int_{\\phi=0}^{2\\pi} 144r^2(sin\\theta cos^2\\theta)(sin^2\\phi)drd\\theta d\\phi"


"=144[\\frac{r^5}{5}]_0^1[\\frac{\\phi}{2}-\\frac{sin2\\phi}{4}]_0^{2\\pi}(\\int_{\\theta=0}^\\pi(sin\\theta cos^2\\theta)d\\theta)"




"=144(\\frac{1}{5})(\\frac{\\pi}{2})(\\frac{2}{3})=\\frac{144\\pi}{15}"




"=\\frac{144\\pi}{15}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS