Find the Jacobian ∂(x, y, z)/∂(u, v, w).
(a) u = xy, v = y, w = x + z (b) u = x + y + z, v = x + y − z, w = x − y + z
Solution;
(a)
Given;
u=xy
v=y
w=x+z
Now;
"x=\\frac uy=\\frac uv"
"y=v"
"z=w-x=w-\\frac uv"
"\\frac{\\partial(x,y,z)}{\\partial(u,v,w)}=\\begin{vmatrix}\n \\frac{\\partial x}{\\partial u} &\\frac{\\partial x}{\\partial v} &\\frac{\\partial x}{\\partial w} \\\\\n \\frac{\\partial y}{\\partial u} & \\frac{\\partial y}{\\partial v}&\\frac{\\partial y}{\\partial w}\\\\\n\\frac{\\partial z}{\\partial u}&\\frac{\\partial z}{\\partial v}&\\frac{\\partial z}{\\partial w}\n\\end{vmatrix}" ="\\begin{vmatrix}\n \\frac1v & \\frac u{v^2}&0 \\\\\n 0 & 1&0\\\\\n-\\frac1v&-\\frac{u}{v^2}&1\n\\end{vmatrix}" ="\\frac1v(1-0)-\\frac{u}{v^2}(0-0)+0(0+\\frac1v)"
Hence;
"\\frac{\\partial(x,y,z)}{\\partial(u,v,w)}=\\frac1v"
(b)
u=x+y+z
v=x+y-z
w=x-y+z
Now;
"v+w=x+y-z+x-y+z=2x"
Hence;
"x=\\frac{v+w}{2}"
Also;
"u-v=x+y+z-x-y+z=2z"
Hence;
"z=\\frac{u-v}{2}"
Also;
"y=x+z-w" ="\\frac{v+w}{2}+\\frac{u-v}{2}-w"
Hence;
"y=\\frac{u-w}{2}"
Therefore;
"\\frac{\\partial(x,y,z)}{\\partial(u,v,w)}=\\begin{vmatrix}\n \\frac{\\partial x}{\\partial u} &\\frac{\\partial x}{\\partial v} &\\frac{\\partial x}{\\partial w} \\\\\n \\frac{\\partial y}{\\partial u} & \\frac{\\partial y}{\\partial v}&\\frac{\\partial y}{\\partial w}\\\\\n\\frac{\\partial z}{\\partial u}&\\frac{\\partial z}{\\partial v}&\\frac{\\partial z}{\\partial w}\n\\end{vmatrix}=\\begin{vmatrix}\n 0 &\\frac 12&\\frac12\\\\\n \\frac12 & 0&-\\frac{1}{2}\\\\\n\\frac12&-\\frac12&0\n\\end{vmatrix}"="0(0+\\frac14)-\\frac12(0+\\frac14)+\\frac12(-\\frac14-0)"
Therefore;
"\\frac{\\partial(x,y,z)}{\\partial(u,v,w)}=-\\frac14"
Comments
Leave a comment