Solution;
(a)
Given;
u=xy
v=y
w=x+z
Now;
x = u y = u v x=\frac uy=\frac uv x = y u = v u
y = v y=v y = v
z = w − x = w − u v z=w-x=w-\frac uv z = w − x = w − v u
∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ \frac{\partial(x,y,z)}{\partial(u,v,w)}=\begin{vmatrix}
\frac{\partial x}{\partial u} &\frac{\partial x}{\partial v} &\frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}&\frac{\partial y}{\partial w}\\
\frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}&\frac{\partial z}{\partial w}
\end{vmatrix} ∂ ( u , v , w ) ∂ ( x , y , z ) = ∣ ∣ ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∂ v ∂ x ∂ v ∂ y ∂ v ∂ z ∂ w ∂ x ∂ w ∂ y ∂ w ∂ z ∣ ∣ =∣ 1 v u v 2 0 0 1 0 − 1 v − u v 2 1 ∣ \begin{vmatrix}
\frac1v & \frac u{v^2}&0 \\
0 & 1&0\\
-\frac1v&-\frac{u}{v^2}&1
\end{vmatrix} ∣ ∣ v 1 0 − v 1 v 2 u 1 − v 2 u 0 0 1 ∣ ∣ =1 v ( 1 − 0 ) − u v 2 ( 0 − 0 ) + 0 ( 0 + 1 v ) \frac1v(1-0)-\frac{u}{v^2}(0-0)+0(0+\frac1v) v 1 ( 1 − 0 ) − v 2 u ( 0 − 0 ) + 0 ( 0 + v 1 )
Hence;
∂ ( x , y , z ) ∂ ( u , v , w ) = 1 v \frac{\partial(x,y,z)}{\partial(u,v,w)}=\frac1v ∂ ( u , v , w ) ∂ ( x , y , z ) = v 1
(b)
u=x+y+z
v=x+y-z
w=x-y+z
Now;
v + w = x + y − z + x − y + z = 2 x v+w=x+y-z+x-y+z=2x v + w = x + y − z + x − y + z = 2 x
Hence;
x = v + w 2 x=\frac{v+w}{2} x = 2 v + w
Also;
u − v = x + y + z − x − y + z = 2 z u-v=x+y+z-x-y+z=2z u − v = x + y + z − x − y + z = 2 z
Hence;
z = u − v 2 z=\frac{u-v}{2} z = 2 u − v
Also;
y = x + z − w y=x+z-w y = x + z − w =v + w 2 + u − v 2 − w \frac{v+w}{2}+\frac{u-v}{2}-w 2 v + w + 2 u − v − w
Hence;
y = u − w 2 y=\frac{u-w}{2} y = 2 u − w
Therefore;
∂ ( x , y , z ) ∂ ( u , v , w ) = ∣ ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w ∣ = ∣ 0 1 2 1 2 1 2 0 − 1 2 1 2 − 1 2 0 ∣ \frac{\partial(x,y,z)}{\partial(u,v,w)}=\begin{vmatrix}
\frac{\partial x}{\partial u} &\frac{\partial x}{\partial v} &\frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}&\frac{\partial y}{\partial w}\\
\frac{\partial z}{\partial u}&\frac{\partial z}{\partial v}&\frac{\partial z}{\partial w}
\end{vmatrix}=\begin{vmatrix}
0 &\frac 12&\frac12\\
\frac12 & 0&-\frac{1}{2}\\
\frac12&-\frac12&0
\end{vmatrix} ∂ ( u , v , w ) ∂ ( x , y , z ) = ∣ ∣ ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∂ v ∂ x ∂ v ∂ y ∂ v ∂ z ∂ w ∂ x ∂ w ∂ y ∂ w ∂ z ∣ ∣ = ∣ ∣ 0 2 1 2 1 2 1 0 − 2 1 2 1 − 2 1 0 ∣ ∣ =0 ( 0 + 1 4 ) − 1 2 ( 0 + 1 4 ) + 1 2 ( − 1 4 − 0 ) 0(0+\frac14)-\frac12(0+\frac14)+\frac12(-\frac14-0) 0 ( 0 + 4 1 ) − 2 1 ( 0 + 4 1 ) + 2 1 ( − 4 1 − 0 )
Therefore;
∂ ( x , y , z ) ∂ ( u , v , w ) = − 1 4 \frac{\partial(x,y,z)}{\partial(u,v,w)}=-\frac14 ∂ ( u , v , w ) ∂ ( x , y , z ) = − 4 1
Comments