Question #268871

Find the average height of the paraboloid z = x

2 + y

2 over the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.


1
Expert's answer
2021-11-23T11:09:06-0500
0202(x2+y2)dydx\displaystyle\int_{0}^2\displaystyle\int_{0}^2(x^2+y^2)dydx

=02(x2(20)+13(230))dx=\displaystyle\int_{0}^2(x^2(2-0)+\dfrac{1}{3}(2^3-0))dx

=02(2x2+83)dx=23(230)+83(20)=\displaystyle\int_{0}^2(2x^2+\dfrac{8}{3})dx=\dfrac{2}{3}(2^3-0)+\dfrac{8}{3}(2-0)

=323=\dfrac{32}{3}

have=1(20)(20)323=83h_{ave}=\dfrac{1}{(2-0)(2-0)}\cdot\dfrac{32}{3}=\dfrac{8}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS