Use a triple integral to find the volume of the wedge in the first octant that is cut from the solid cylinder y
2 + z
2 ≤ 1
by the planes y = x and x = 0
The wedge can be described as the region:
"D=\\{(x,y,z)|0\\le z^2\\le \\sqrt{1-y^2},0\\le y\\le 1,0\\le x\\le y\\}"
"V=\\int^1_0\\int^y_0\\int^{\\sqrt{1-y^2}}_0 dzdxdy"
in cylindrical coordinates:
"y=rcos\\theta,z=rsin\\theta,x=x"
"V=\\int^{\\pi\/2}_0\\int^1_0\\int^{rcos\\theta}_0 dxrdrd\\theta=\\int^{\\pi\/2}_0\\int^1_0r^2cos\\theta drd\\theta="
"=\\int^{\\pi\/2}_0\\frac{cos\\theta}{3}d\\theta=1\/3"
Comments
Leave a comment