Question #268869

Use a double integral in polar coordinates to find the area of the region common to the interior of the cardioids

r = 1 + cos θ and r = 1 − cos θ.


1
Expert's answer
2021-11-22T17:57:36-0500


In order to calculate the area between the curves, we determine the points of intersection:


1+cosθ=1cosθ1+\cos \theta=1-\cos \theta

cosθ=0\cos \theta=0

θ=π/2\theta=\pi/2

θ=π/2\theta=-\pi/2

The area is calculated using the following equation:


A=π/2π/21cosθ1+cosθrdrdθA=\displaystyle\int_{-\pi/2}^{\pi/2}\displaystyle\int_{1-\cos \theta}^{1+\cos \theta}rdrd\theta

Using symmetry:


A=π/2π/21cosθ1+cosθrdrdθ=20π/21cosθ1+cosθrdrdθA=\displaystyle\int_{-\pi/2}^{\pi/2}\displaystyle\int_{1-\cos \theta}^{1+\cos \theta}rdrd\theta=2\displaystyle\int_{0}^{\pi/2}\displaystyle\int_{1-\cos \theta}^{1+\cos \theta}rdrd\theta

=20π/2[r22]1+cosθ1cosθdθ=2\displaystyle\int_{0}^{\pi/2}\bigg[\dfrac{r^2}{2}\bigg]\begin{matrix} 1+\cos \theta \\ 1-\cos\theta \end{matrix}d\theta

=20π/2(4cosθ)dθ=8[sinθ]π/20=8(units2)=2\displaystyle\int_{0}^{\pi/2}(4\cos\theta)d\theta=8[\sin \theta]\begin{matrix} \pi/2 \\ 0 \end{matrix}=8({units}^2)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS