f ( x ) = { 1 + 2 x x β€ 0 3 x β 2 0 < x β€ 1 2 x β 1 x > 1 f(x) = \begin{cases}
1+2x &x\leq 0 \\
3x-2 &0<x\leq 1\\
2x-1 & x>1
\end{cases} f ( x ) = β© β¨ β§ β 1 + 2 x 3 x β 2 2 x β 1 β x β€ 0 0 < x β€ 1 x > 1 β i)
lim β‘ x β 0 β f ( x ) = lim β‘ x β 0 β ( 1 + 2 x ) = 1 + 2 ( 0 ) = 1 \lim\limits_{x\to 0^-}f(x)=\lim\limits_{x\to 0^-}(1+2x)=1+2(0)=1 x β 0 β lim β f ( x ) = x β 0 β lim β ( 1 + 2 x ) = 1 + 2 ( 0 ) = 1
lim β‘ x β 0 + f ( x ) = lim β‘ x β 0 + ( 3 x β 2 ) = 3 ( 0 ) β 2 = β 2 \lim\limits_{x\to 0^+}f(x)=\lim\limits_{x\to 0^+}(3x-2)=3(0)-2=-2 x β 0 + lim β f ( x ) = x β 0 + lim β ( 3 x β 2 ) = 3 ( 0 ) β 2 = β 2
lim β‘ x β 0 β f ( x ) = 1 =ΜΈ β 2 = lim β‘ x β 0 + f ( x ) \lim\limits_{x\to 0^-}f(x)=1\not=-2=\lim\limits_{x\to 0^+}f(x) x β 0 β lim β f ( x ) = 1 ξ = β 2 = x β 0 + lim β f ( x )
lim β‘ x β 0 f ( x ) does not exist \lim\limits_{x\to 0}f(x) \text{does not exist} x β 0 lim β f ( x ) does not exist The function f ( x ) f(x) f ( x ) has an jump discontinuity at x = 0. x=0. x = 0.
lim β‘ x β 1 β f ( x ) = lim β‘ x β 1 β ( 3 x β 2 ) = 3 ( 1 ) β 2 = 1 \lim\limits_{x\to 1^-}f(x)=\lim\limits_{x\to 1^-}(3x-2)=3(1)-2=1 x β 1 β lim β f ( x ) = x β 1 β lim β ( 3 x β 2 ) = 3 ( 1 ) β 2 = 1
lim β‘ x β 1 + f ( x ) = lim β‘ x β 1 + ( 2 x β 1 ) = 2 ( 1 ) β 1 = 1 \lim\limits_{x\to 1^+}f(x)=\lim\limits_{x\to 1^+}(2x-1)=2(1)-1=1 x β 1 + lim β f ( x ) = x β 1 + lim β ( 2 x β 1 ) = 2 ( 1 ) β 1 = 1
lim β‘ x β 1 β f ( x ) = 1 = lim β‘ x β 1 + f ( x ) = > lim β‘ x β 1 f ( x ) = 1 \lim\limits_{x\to 1^-}f(x)=1=\lim\limits_{x\to 1^+}f(x)=>\lim\limits_{x\to 1}f(x)=1 x β 1 β lim β f ( x ) = 1 = x β 1 + lim β f ( x ) => x β 1 lim β f ( x ) = 1
f ( 1 ) = 3 ( 1 ) β 2 = 1 = lim β‘ x β 1 f ( x ) f(1)=3(1)-2=1=\lim\limits_{x\to 1}f(x) f ( 1 ) = 3 ( 1 ) β 2 = 1 = x β 1 lim β f ( x ) The function f ( x ) f(x) f ( x ) is continuous at x = 1. x=1. x = 1.
The function f ( x ) f(x) f ( x ) is discontinuous at x = 0. x=0. x = 0.
The function f ( x ) f(x) f ( x ) has an jump discontinuity at x = 0. x=0. x = 0.
ii)
Comments