Β Let π(π₯) = ΰ΅ 1 + 2π₯, π₯ β€ 0 3π₯ β 2,0 < π₯ β€ 1 2π₯ ΰ¬Ά β 1, π₯ > 1 i) Check whether f is discontinuous. If yes, find where? ii) Give a rough sketch of the graph of f.
i)
"\\lim\\limits_{x\\to 0^+}f(x)=\\lim\\limits_{x\\to 0^+}(3x-2)=3(0)-2=-2"
"\\lim\\limits_{x\\to 0^-}f(x)=1\\not=-2=\\lim\\limits_{x\\to 0^+}f(x)"
"\\lim\\limits_{x\\to 0}f(x) \\text{does not exist}"
The function "f(x)" has an jump discontinuity at "x=0."
"\\lim\\limits_{x\\to 1^+}f(x)=\\lim\\limits_{x\\to 1^+}(2x-1)=2(1)-1=1"
"\\lim\\limits_{x\\to 1^-}f(x)=1=\\lim\\limits_{x\\to 1^+}f(x)=>\\lim\\limits_{x\\to 1}f(x)=1"
"f(1)=3(1)-2=1=\\lim\\limits_{x\\to 1}f(x)"
The function "f(x)" is continuous at "x=1."
The function "f(x)" is discontinuous at "x=0."
The function "f(x)" has an jump discontinuity at "x=0."
ii)
Comments
Leave a comment