"(1)\\varSigma_{n=1}^\\infin ar^{n-1}=3\\\\\n \\\\\u22121<r<1 \\ is\n\\\\ S=\\frac{{a}_{1}}{1-r}"
where "a=first \\ term \\ \\&\\ r=common\\ ratio"
"S=3"
"3=\\frac{a}{1-r}"
therefore
"r=\\frac{3-a}{3}"
"For\\ a\\ series\\ to\\ converge: \u22121<r<1"
"\u22121<r<1"
"\u22121<\\frac{3-a}{3}<1"
"\u22123<3-a<3"
"-6<\u2212a<0"
"0<a<6"
"final\\ answer\\\\\n\nFor\\ the\\ series\\ to\\ converge, 0<a<6\\ \nand \u22121<r<1."
(2) "1-2+\\frac{4}{2!}-\\frac{8}{3!}+\\frac{16}{4!}-\\frac{32}{5!}+\\frac{64}{6!}-\\frac{128}{7!}+--++\\frac{-2^n}{n!}+--"
"=e^{-2}=0.135"
"=0.135"
Comments
Leave a comment