Question #268636
  1. Find an infinite series series of positive terms which sums to 3
  2. Find the exact value of 1-2+4/2!-8/3!+16/4!-31/5!+64/6!-128/7!..+(-2)n/n!
1
Expert's answer
2021-11-22T05:48:36-0500

(1)Σn=1arn1=31<r<1 isS=a11r(1)\varSigma_{n=1}^\infin ar^{n-1}=3\\ \\−1<r<1 \ is \\ S=\frac{{a}_{1}}{1-r}


where a=first term & r=common ratioa=first \ term \ \&\ r=common\ ratio


S=3S=3


3=a1r3=\frac{a}{1-r}


therefore

r=3a3r=\frac{3-a}{3}


Apply the condition for convergence to determine possible values of a

For a series to converge:1<r<1For\ a\ series\ to\ converge: −1<r<1


1<r<1−1<r<1


1<3a3<1−1<\frac{3-a}{3}<1


3<3a<3−3<3-a<3

6<a<0-6<−a<0

0<a<60<a<6


final answerFor the series to converge,0<a<6 and1<r<1.final\ answer\\ For\ the\ series\ to\ converge, 0<a<6\ and −1<r<1.






(2) 12+42!83!+164!325!+646!1287!+++2nn!+1-2+\frac{4}{2!}-\frac{8}{3!}+\frac{16}{4!}-\frac{32}{5!}+\frac{64}{6!}-\frac{128}{7!}+--++\frac{-2^n}{n!}+--


=e2=0.135=e^{-2}=0.135


=0.135=0.135



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS